National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Antimicrobial biosurfactant producing Fluorescent Pseudomonads biovar (Pf-V1) was isolated from Maize/Sugar beet rhizosphere in sandy loam soil and tested for the presence of viscosinby HPLC analysis. The strain performed its antifungal activity against major fungal disease of maize with zoosporicidal activity against downy mildew pathogen of maize. The strain is grouped under V1 (Associated with the production of Viscosin). The strain improves growth & systemic protection of maize crop against foliar & soil-borne pathogens and surprisingly drought tolerance. Genetic improvement of Pf strains with increased Viscosinproduction, biosurfactant properties & wide applicability to other crops will be aimed as separate research theme.
Artursson, V., Finlay, R.D and Jansson, J. K. 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology.8: 1-10. https://doi.org/10.1111/j.1462-2920.2005.00942
Biniarz, P., ?ukaszewicz, M., Janek, T. 2017. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol.37(3):393-410. https://doi.org/10.3109/07388551.2016.1163324.
Bruine de Bruin, W., Parker, A.M., Fischhoff, B. 2007. Individual differences in adult decision-making 221 competence. J. Person. Soc. Psychol. 92(5):938-956. http://dx.doi.org/10.1037/0022-3514.92.5.938
Cesa-Luna, C., Geudens, N., Girard, L., De Roo, V., Maklad, H.R. 2023. Martins J, De Mot, R. Charting the lipopeptidome of nonpathogenic Pseudomonas. MSYSTEMS.8(1).https://doi.org/10.1128/msystems.00988-22
Chauhan, V., Mazumdar, S., Pandey, A., Kanwar, S.S. 2023. Pseudomonas lipopeptide an excellent biomedical agent. Med Comm – Biomater Appl.; 2:27. https://doi.org/10.1002/mba2.CHAUHAN et al., | 15 of 15 Page 9 of 11 The Plant Pathology Journal
de Bruijn, I., De Kock, M.J.D., Yang, M., De Waard, P., Van Beek, T.A and Raaijmakers, J.M. 2007. Genome based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbio.63: 417–428. https://doi.org/10.1111/j.1365-2958.2006.05525.x
Fardami, A.Y., Kawo, A.H., Yahaya, S., Lawal, I., Abubakar, A.S., Maiyadi, K.A., 2022. Review on Biosurfactant Properties, Production and Producing Microorganisms. Journal of Biochemistry, Microbiology and Biotechnology.10 (1): 5–12. https://doi.org/10.54987/jobimb.v10i1.656
Fechtner, J., Koza, A., Sterpaio, P.D, Hapca, S.M and Spiers, A.J. 2011. Surfactants expressed by soil pseudomonads alter local soil-water distribution, suggesting a hydrological role for these compounds. FEMS Microbiol Ecol.78: 50–58. https://doi.org/10.1111/j.1574-6941.2011.01141.x
Geudens, N., Martins, J.C., 2018. Cyclic Lipodepsipeptides from Pseudomonas spp. - Biological Swiss Army Knives. Front Microbiol.Aug;14(9) :1867. https://doi.org/10.3389/fmicb.2018.01867.
Groupé, V., Pugh, L., Weiss, D., Kochi M. 1951. Observations on antiviral activity of viscosin. Proc Soc Exp Biol Med.1951;78:354–358 https://doi.org/10.3181/00379727-78-19071
Haas, D and Défagon, G. 2005. Biological control of soilborne pathogens by fluorescent 236 pseudomonads. Nat Rev Microbiol.3: 307–319 https://doi.org/10.1038/nrmicro1129
Laycock, M.V., Hildebrand, P.D., Thibault, P., Walter, J.A and Wright, J.L.1991. Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J Agric Food Chem.39: 483–489. Page 10 of 11 The Plant Pathology Journal Only
Mazzola, M., de Bruijn, I., Cohen, M.F and Raaijmakers, J.M. 2009. Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl.Environ.Microbiol.75: 6804–6811. https://doi.org/10.1128/AEM.01272-09
Neu, T.R., Härtner, T & Poralla, K.1990. Surface active properties of viscosin: a peptidolipid antibiotic. Appl. Microbiol. Biotechnol.32; 518–520. https://doi.org/10.1007/BF00173720
O'Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B. & Kolter.R. 1999. Genetic approaches to the study of biofilms. Methods Enzymol.310:91-109. https://doi.org/10.1016/s0076-6879(99)10008-9
Raaijmakers, J.M., De Bruijn I., Nybroe O and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev.34: 1037–1062 https://doi.org/10.1111/j.1574-6976.2010.00221.x
Radhajeyalakshmi Raju., Sethuraman Kandhasamy., Ganesan Kalipatty Nalliappan., Kumari Vinodhana Natarajan., Karthikeyan Gandhi and Bharathi Chandrasekaran. 2016. "Cyclic depsipeptide producing fluorescent pseudomonads exerts antifungal activity against fungal pathogens of maize (Zea mays). African Journal of Microbiology Research.10(42): 1767-1774. http://dx.doi.org/10.5897/AJMR2016.8265
Salek, K. and Euston, S.R. 2019. Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochemistry.85:143-155. https://doi.org/10.1016/j.procbio.2019.06.027
Shekhar, S., Sundaramanickam, A., Balasubramanian, T. 2015. Biosurfactant Producing Microbes and their Potential Applications: A Review. Critical Reviews in Environmental Science and Technology.45 (14): 1522 – 1554. https://doi.org/10.1080/10643389.2014.955631
Singh, P., Singh, R.K., Zhou, Y., Wang, J., Jiang, Y., Shen, N. 2022. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. Journal of Plant Interactions.17:220-238. https://doi.org/10.1080/17429145.2022.2029963![]() |
![]() |
![]() |
![]() |
![]() |