National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
β-Galactosidase, (EC.3.2.1.23), most commonly known as lactase, which hydrolyses lactose into its glucose and galactose has potential applications in the dairy and food processing industries. This enzyme holds importance in formulating lactose-hydrolyzed products from both milk and whey for lactose-intolerant people. The enzyme is also crucial in biosynthesis of galacto-oligosaccharides as prebiotics for use in probiotics to restore gut health. Whey, the major dairy industry affluent can be used as a potent raw material for the growth of β -galactosidase producing microbes and the enzyme can further be used to hydrolyze whey thus reducing burden on soil and aquatic ecosystems. Free and immobilized preparations of β galactosidases have been exploited as biosensors in various applications such as industrial, biotechnological, medical, analytical areas. This review focuses on various sources of β-galactosidases, aspects of production, purification and immobilization of the enzyme and potential biotechnological applications.
Albayrak N, Yang ST. 2002. Immobilization of Aspergillus oryzae β galactosidaseon tosylated cotton cloth. Enzyme and Microbial Technology 31: 371–383. https://doi.org/10.1016/S0141-0229(02)00115-1
Alikkunju, A. P., Sainjan, N., Silvester, R., Joseph, A., Rahiman, M., Antony, A. C., Kumaran, R. C., & Hatha, M. (2016). Screening and Characterization of Cold-Active β-Galactosidase Producing Psychrotrophic Enterobacter ludwigii from the Sediments of Arctic Fjord. Applied biochemistry and biotechnology, 180(3), 477–490 https://doi.org/10.1007/s12010-016-2111-y
Ansari, Shakeel & Husain, Qayyum. (2011). Immobilization of Aspergillus oryzae β galactosidase on concanavalin A-layered calcium alginate-cellulose beads and its application in lactose hydrolysis in continuous spiral bed reactors. Polish Journal of Chemical Technology. 13 http://dx.doi.org/10.2478/v10026-011-0043-4
Anumukonda P, Tadimalla P, (2010), Screening of β-Galactosidase Producing Fungi from Marine Samples, Biosciences Biotechnology Research Asia, 7(1).
Bazin, M. J., & Seo, Y. (2017). Biosensor-based wastewater screening for toxicity monitoring using recombinant β-galactosidase activity in yeast combined with estrogen screening assays. Environmental Engineering Research, 22(2), 158–165. https://doi.org/10.4491/eer.2016.134
Bazin, I., Seo, H. B., Suehs, C. M., Ramuz, M., De Waard, M., & Gu, M. B. (2017). Profiling the biological effects of wastewater samples via bioluminescent bacterial biosensors combined with estrogenic assays. Environmental science and pollution research international, 24(1), 33–41. https://doi.org/10.1007/s11356-016-6050-5
Bekler, F. M, P. Stougaard, K. Güven, R. Gül Güven and Ö. Acer, (2015), Cloning, purification and characterization of a thermostable β-galactosidase from Bacillus licheniformis strain KG9, Cellular & Molecular Biology, 61 (3): 71-78
Betancor,L., Luckarift,H.R., Seo,J.H., Brand,O., & Spain, J. C. (2008). Three-dimensional immobilization of beta-galactosidase on a silicon surface. Biotechnology and bioengineering, 99(2), 261–267. https://doi.org/10.1002/bit.21570
Brandão, S. C. C., Rodrigues, M. I., & Pessoa, A. (1987). Environmental impact of whey disposal and its potential as a substrate for fermentation. Revista de Microbiologia, 18(4), 315–320.
Champluvier, B., Leempoel, H., & Mercenier, A. (1988). Genetic and biochemical characterization of Lactobacillus bulgaricus β-galactosidase and its application in lactose hydrolysis. Applied Microbiology and Biotechnology, 28(4-5), 452–458. https://doi.org/10.1007/BF00268215
Chanalia, P., Gandhi, D., Attri, P., & Dhanda, S. (2018). Purification and characterization of β-galactosidase from probiotic Pediococcusacidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorganic chemistry, 77, 176–189. https://doi.org/10.1016/j.bioorg.2018.01.006
Chen, W., Chen, H., Xia, Y., Zhao, J., Tian, F., & Zhang, H. (2008). Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. Journal of dairy science, 91(5), 1751–1758. https://doi.org/10.3168/jds.2007-617
Coté, A., Brown, W. A., Cameron, D., & van Walsum, G. P. (2004), Hydrolysis of lactose in whey permeate for subsequent fermentation to ethanol., Journal of dairy science, 87(6), 1608–1620. https://doi.org/10.3168/jds.S0022-0302(04)73315-9
Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019), Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients, 11(3), 551. https://doi.org/10.3390/nu11030551
Depeint, F., Tzortzis, G., Vulevic, J., I'anson, K., & Gibson, G. R. (2008). Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. The American journal of clinical nutrition, 87(3), 785–791 https://doi.org/10.1093/ajcn/87.3.785
Di Lauro B, Strazzulli A, Perugino G, La Cara F, Bedini E, Corsaro MM, Rossi M, Moracci M. (2008), Isolation and characterization of a new family 42 betagalactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues. Biochimica et biophysica acta, 1784(2), 292–301. https://doi.org/10.1016/j.bbapap.2007.10.013
Domingues, L., Teixeira, J. A., & Lima, N. (2005). Recombinant yeast as a biotechnological tool to improve the nutritional and health-promoting value of food products. Trends in Food Science & Technology, 16(5), 253–260. https://doi.org/10.1016/j.tifs.2004.10.006
Dong, Q., Yan, X., Zheng, M., & Yang, Z. (2014), Characterization of an extremely thermostable but cold-adaptive β-galactosidase from the hyperthermophilicarchae on Pyrococcus furiosus for use as a recombinant aggregation for batch lactose degradation at high temperature. Journal of bioscience and bioengineering, 117(6), 706–710 https://doi.org/10.1016/j.jbiosc.2013.12.002
Dutra Rosolen, M., Gennari, A., Volpato, G., & Volken de Souza, C. F. (2015). Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases. Enzyme research, 806240. https://doi.org/10.1155/2015/806240
Elias LF, Pravato VT, Lopes LS, Flávia A P, Deusélio B F and Wilton SC, (2019), Optimization of β-galactosidase production by Trametes versicolor J5 in whey. Biotechnology: An Indian Journal.15(3):190. https://doi.org/10.37532/0974-7435.2019.15(3).190
Ferreira, J. P. (2014). A hybrid biosensor incorporating glucose oxidase for rapid lactose determination in dairy products using flow injection analysis. Sensors and Actuators B: Chemical, 204, 314–320. https://doi.org/10.1016/j.snb.2014.07.020
Francesconi, C. F., Machado, M. B., Steinwurz, F., Nones, R. B., Quilici, F. A., Catapani, W. R., Miszputen, S. J., & Bafutto, M. (2016). Oral Administration Of Exogenous Lactase In Tablets For Patients Diagnosed With Lactose Intolerance Due To Primary Hypolactasia. Arquivos de gastroenterologia, 53(4), 228–234. https://doi.org/10.1590/s0004-28032016000400004
Gargova, S., Pishtijski, I., & Stoilova, I. (1995). Purification and Properties of β-Galactosidase from Aspergillus oryzae. Biotechnology & Biotechnological Equipment, 9(4), 47–51.
Gennari, A., Simon, R., Sperotto, N. D. M., Bizarro, C. V., Basso, L. A., Machado, P., Benvenutti, E. V., Da Cas Viegas, A., Nicolodi, S., Renard, G., Chies, J. M., Volpato, G., & Volken de Souza, C. F. (2022). One-step purification of a recombinant beta-galactosidase using magnetic cellulose as a support: Rapid immobilization and high thermal stability. Bioresource technology, 345, 126497. https://doi.org/10.1016/j.biortech.2021.126497
Haider T, Husain Q. (2009). Immobilization of β galactosidase from Aspergillus oryzae via immunoaffinity support. Biochemical Engineering Journal 43: 307–314 http://dx.doi.org/10.1016/j.bej.2008.10.012
Horner, T. W., Dunn, M. L., Eggett, D. L., & Ogden, L. V. (2011). β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. Journal of dairy science, 94(7), 3242–3249 https://doi.org/10.3168/jds.2010-3742
Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, François JM, Baise E, Feller G, Gerday C., (2001), Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Applied and Environmental Microbiology, 67(4):1529-35. https://doi.org/10.1128/AEM.67.4.1529-1535.2001
Hsu, C. A., Yu, R. C., & Chou, C. C. (2005). Production of beta-galactosidase by Bifidobacteria as influenced by various culture conditions. International journal of food microbiology, 104(2), 197–206. https://doi.org/10.1016/j.ijfoodmicro.2005.02.010
Huifang Yin, Bultema, J. B., van Leeuwen, S. S., de Vos, P., & Schols, H. A. (2017). Galacto-oligosaccharides synthesis by β-galactosidase from Lactobacillus plantarum WCFS1: Analysis of product formation and enzyme kinetics. Journal of Agricultural and Food Chemistry, 65(44), 9789–9796. https://doi.org/10.1021/acs.jafc.7b03632
Iwashita K. (2002). Recent studies of protein secretion by filamentous fungi. Journal of bioscience and bioengineering, 94(6), 530–535. https://doi.org/10.1016/S1389-1723(02)80191-8
Kazemi, S., Khayati, G., & Faezi-Ghasemi, M. (2016). β-galactosidase Production by Aspergillus niger ATCC 9142 Using Inexpensive Substrates in Solid-State Fermentation: Optimization by Orthogonal Arrays Design. Iranian biomedical journal, 20(5), 287–294. https://doi.org/10.22045/ibj.2016.06
Kennedy, M. J. (1987). Production and properties of microbial β-galactosidase. Enzyme and Microbial Technology, 9(1), 66–73. https://doi.org/10.1016/0141-0229(87)90045-6
Kreft, J. U., Booth, G., & Wimpenny, J. W. T. (2001). BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology, 147(Pt 11), 3275–3287. https://doi.org/10.1099/00221287-147-11-3275
Lais S Bolognesi, Sabrina Gabardoand Paulo Roberto DallCortivo , Marco AntônioZáchiaAyub (2022), Biotechnological production of galactooligosaccharides (GOS) using porungo cheese whey. Food Science and Technology. Vol. 42. https://doi.org/10.1590/fst.64520
Lee, K.-S & Kim, Chang-Jin & Yoon, Ki-Hong. (2003), Characterization of the β-galactosidase produced by Streptomyces sp. YB-10. Korean Journal of (Applied) Microbiology & Biotechnology, vol. 31, 151-156
Li, S., Zhu, X., & Xing, M. (2019), A New β-Galactosidase from the Antarctic Bacterium Alteromonas sp.ANT48 and Its Potential in Formation of Prebiotic Galacto-Oligosaccharides. Marine drugs, 17(11), 599. https://doi.org/10.3390/md17110599
Lukacheva, L. & Zakemovskaya, A. & Karyakina, E. & Zorov, I. & Sinitsyn, A. & Sukhacheva, Marina & Netrusov, Alexander & Karyakin, A. (2007), Determination of glucose and lactose in food products with the use of biosensors based on Berlin blue. Journal of Analytical Chemistry. 62.388-393. http://dx.doi.org/10.1134/S106193480704017X
Mahdian, S. M., Karimi, E., Tanipour, M. H., Parizadeh, S. M., Ghayour-Mobarhan, M., Bazaz, M. M., & Mashkani, B. (2016). Expression of a functional cold active β-galactosidase from Planococcus sp-L4 in Pichia pastoris., Protein expression and purification, 125, 19–25. https://doi.org/10.1016/j.pep.2015.09.008
Makwana, Shrushti & Hati, Subrota & Parmar, Heena & Aparnathi, Kishorkumar. (2017). Process Optimization for the Production of β-Galactosidase Using Potential Lactobacillus Cultures. International Journal of Current Microbiology and Applied Sciences. 6. 1454-1469. http://dx.doi.org/10.20546/ijcmas.2017.608.176
Mammarella EJ, Rubiolo AC. (2005). Study of the deactivation of β galactosidase entrapped in alginate-carrageenan gels. Journal of Molecular Catalysis B: Enzymatic, 34: 7–13. http://dx.doi.org/10.1016/j.molcatb.2005.04.007
Mangiagalli, Marco, and Marina Lotti, (2021), Cold-Active β-Galactosidases: Insight into Cold Adaption Mechanisms and Biotechnological Exploitation., Marine drugs 19.1: 43. https://doi.org/10.3390/md19010043
Maria De Fatima, Somerlate Barbosa, Daison Olzany Silva, Adão José Rezende Pinheiro, Walter Vieira Guimarães, Arnaldo Chaer Borges, (1985), Production of Beta-D-Galactosidase from Kluyveromyces fragilis grown in Cheese Whey, Journal of Dairy Science, Volume 68, Pages 1618-1623, https://doi.org/10.3168/jds.S0022-0302(85)81004-3
Mathew, F.P. & Alocilja, E.C. (2005). Porous silicon-based biosensor for pathogen detection. Biosensors & bioelectronics, 20(8), 1656–1661. https://doi.org/10.1016/j.bios.2004.08.006
Naoko Saishin, Masami Ueta, Akira Wada, and Isamu Yamamoto, (2010), Properties of β-galactosidase purified from Bifidobacterium longum JCM7052 grown on gum arabic, Journal of Biological Macromolecules., 10 (1), 23-31
Neti, V. S., Prasad, R. S., & Kumar, R. (2025). Microbial β-galactosidases: production, properties and industrial applications. Journal of Industrial Microbiology & Biotechnology, 52(2), 101–110
Nickerson, T. A., I.F. Vujicic, A.Y. Lin,(1976) Colorimetric Estimation of Lactose and Its Hydrolytic Products, Journal of Dairy Science, Volume 59 (3) 386 – 390 https://doi.org/10.3168/jds.S0022-0302(76)84217-8
Nivetha A and Mohanasrinivasan V., (2017) IOP Conf. Ser:Materials Science and Engineering, 263 022046 https://doi.org/10.1088/1757-899X/263/2/022046
O'Connell, Shane & Walsh, Gary. (2009), A novel acid-stable, acid-active β-galactosidase potentially suited to the alleviation of lactose intolerance. Applied microbiology and biotechnology. 86. 517-24. https://doi.org/10.1007/s00253-009-2270-7
Ovsejevi K, Grazu V, Cuadra K, Batista-Viera F. (2004), Enzyme reduction on solid phase as a tool for the reversible immobilization of yeast β galactosidase onto a thiol-reactive support. Enzyme and Microbial Technology35:203–209.
Panesar, P. S., Kumari, S., & Panesar, R. (2010). Potential Applications of Immobilized β-Galactosidase in Food Processing Industries. Enzyme research, 2010, 473137. https://doi.org/10.4061/2010/473137
Panesar, Parmjit & Panesar, Reeba & Singh, Ram & Bera, Manab. (2007). Permeabilization of Yeast Cells with Organic Solvents for ß-galactosidase Activity. Research Journal of Microbiology. 2. 34-41. https://doi.org/10.3923/jm.2007.34.41.
Panesar, Parmjit & Panesar, Reeba & Singh, Ram & Kennedy, John & Chopra, Harish. (2006). Microbial production immobilization and application of β-D-galactosidase. Journal of Chemical Technology and Biotechnology. 81. 530 – 543 http://dx.doi.org/10.1002/jctb.1453
Pfeiffer, D., Ralis, E. V., Makower, A., & Scheller, F. W. (1990). Amperometric bi-enzyme based biosensor for the detection of lactose--characterization and application. Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986), 49(3), 255–265. https://doi.org/10.1002/jctb.280490307
Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F., & Matuchansky, C. (2005). Review article: bifidobacteria as probiotic agents -- physiological effects and clinical benefits. Alimentary pharmacology & therapeutics, 22(6), 495–512. https://doi.org/10.1111/j.1365-2036.2005.02615.x
Prashar, D., Kaur, H., & Pundir, R. K. (2016). β-Galactosidase: An overview. International Journal of Current Microbiology and Applied Sciences, 5(10), 501–509.
Princely, S G.; Basha, N. S.; Kirubakaran, J. J.; Dhanaraju, M. D, (2013), Biochemical characterization, partial purification, and production of an intracellular beta-galactosidase from Streptococcus thermophilus grown in whey. European. Journal of Experimental. Biology. 3, 242-251.
Rabiu, B. A., Jay, A. J., Gibson, G. R., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species. Applied and environmental microbiology, 67(6), 2526–2530. https://doi.org/10.1128/aem.67.6.2526-2530.2001
Rao, S. N., & Dutta, S. M. (1978). Hydrolysis of lactose by β-galactosidase. Journal of Food Science and Technology, 15(4), 170–173.
Rivero-Urgëll, M., & Santamaría-Orleans, A.(2001). Oligosaccharides: application in infant food. Early human development, 65 Suppl, S43–S52. https://doi.org/10.1016/s0378-3782(01)00202-x
Rodriguez-Nogales JM, Delgadillo-Lopez A. (2005) Stability and catalytic kinetics of microencapsulated β galactosidase in liposomes prepared by the dehydration–rehydration method. Journal of Molecular Catalysis B: Enzymatic33: 15–21.
Sangwan V, Tomar SK, Ali B, Singh RR, Singh AK. (2014), Production of β-galactosidase from Streptococcus thermophilus for galacto-oligosaccharides synthesis. Journal of Food Science and Technology. 52(7):4206–4215. https://doi.org/10.1007/s13197-014-1486-4
Selvarajan, E., Mohanasrinivasan, V., Subathra Devi, C., & George Priya Doss, C. (2015). Immobilization of β-galactosidase from Lactobacillus plantarum HF571129 on ZnO nanoparticles: characterization and lactose hydrolysis. Bioprocess and biosystems engineering, 38(9), 1655–1669. https://doi.org/10.1007/s00449-015-1407-6
Shweta Kumari, Parmjit S. Panesar and Reeba Panesar, (2011), Production of β-galactosidase using Novel Yeast Isolate from Whey. International Journal of Dairy Science,Vol 6, 150-157 https://doi.org/10.3923/ijds.2011.150.157
Sitanggang A.B; Drews, A., & Kraume, M. (2016). Recent advances on prebiotic lactulose production. World journal of microbiology & biotechnology, 32(9), 154. https://doi.org/10.1007/s11274-016-2103-7
Skálová, T., Dohnálek, J., Spiwok, V., Lipovová, P., Vondrácková, E., Petroková, H., Dusková, J., Strnad, H., Králová, B., & Hasek, J. (2005). Cold-active beta-galactosidase from Arthrobacter sp. C2-2 forms compact 660 kDahexamers: crystal structure at 1.9A resolution. Journal of molecular biology, 353(2), 282–294. https://doi.org/10.1016/j.jmb.2005.08.028
Stevenson DK, Crawford JS and Carroll JO, (1983), Enzymatic hydrolysis of lactose in ice-cream. Journal of Dairy Science 66: 75–78.
Tari, C., Genç, Ö., & Tokatl?, F. (2010). Optimization of growth conditions for β-galactosidase production by Aspergillus niger using response surface methodology. Process Biochemistry, 45(4), 602–607. https://doi.org/10.1016/j.procbio.2009.12.017
Van de Voorde, I., K. Goiris, E. Syryn, C. Van den Bussche, G. Aerts, (2014), Evaluation of the cold-active Pseudoalteromonas haloplanktis β-galactosidase enzyme for lactose hydrolysis in whey permeate as primary step of d-tagatose production, Process Biochemistry,Vol 49,Pages 2134-2140 https://doi.org/10.1016/j.procbio.2014.09.010
Vasiljevic, T, P Jelen, (2002) Lactose hydrolysis in milk as affected by neutralizers used for the preparation of crude β-galactosidase extracts from Lactobacillus bulgaricus 11842, Innovative Food Science & Emerging Technologies,Vol 3, Pages 175-184 https://doi.org/10.1016/S1466-8564(02)00016-4
Verma, M. L., Barrow, C. J., Kennedy, J. F., & Puri, M. (2012). Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. International journal of biological macromolecules, 50(2), 432–437. https://doi.org/10.1016/j.ijbiomac.2011.12.029
Zadow, J. G., (1992), Whey and lactose processing. Elsevier Applied Sciences,
Zhou Quinn Z.K, Xiao Dong Chen, (2001) Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis, Biochemical Engineering Journal, Vol9, Issue 1,Pages 33-40 https://doi.org/10.1016/S1369-703X(01)00118-8![]() |
![]() |
![]() |
![]() |
![]() |