National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Streptococcus pneumoniae is the most common cause of community-acquired and hospital-acquired pneumonia globally with little data on surveillance in semi-urban India. The ensuing spread of antimicrobial resistance has added to the complexity of the treatment outcomes especially in the under-resource districts like Beed, Maharashtra. In all, 150 throat swab specimens of clinically suspected pneumonia patients were obtained in four wards lasting 12-months between January 2022 and December 2022. S. pneumoniae was isolated and identified by classical phenotypic and biochemical testing including Gram staining, haemolysis, optochin susceptibility, bile dissolution and sugar fermentation patterns. Confirmed isolates were tested for antibiotic susceptibility with a broad spectrum of 0-lactams, macrolides, fluoroquinolones, tetracyclines, glycopeptides, carbapenems, and other agents which were interpreted according to CLSI guidelines. Out of 150 samples, 109 (72.6%) were confirmed as S. pneumoniae, with the highest distribution in ICU patients (28.4%). Males accounted for 56% of isolates. Antimicrobial susceptibility testing revealed high resistance to penicillin (47.7%), ampicillin (47.7%), azithromycin (70.6%), clindamycin (45%), tetracycline (42.2%), and trimethoprim–sulfamethoxazole (56.9%). In contrast, newer cephalosporins such as ceftaroline (81.6%) and cefepime (78.0%), along with carbapenems (78–81%), vancomycin (100%), linezolid (98.2%), and tigecycline (100%), demonstrated strong efficacy. Fluoroquinolones exhibited moderate susceptibility, with levofloxacin being the most effective (71.6%). The prevalence of S. pneumoniae multidrug-resistant strains is a concern in Beed; this incredibly represents both deficiencies in diagnosis and stewardship. The use of last-line antibiotics highlights the need to adopt rational prescribing, improve on vaccination coverage, and increase local resistance surveillance in order to minimize morbidity, mortality, and economic cost.
Aleem, M. S., Sexton, R., & Akella, J. (2020). Pneumonia In An Immunocompromised Patient. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557843
Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews. Microbiology, 10(4), 266–278. https://doi.org/10.1038/nrmicro2761
Bonomo, R. A., Burd, E. M., Conly, J., Limbago, B. M., Poirel, L., Segre, J. A., & Westblade, L. F. (2018). Carbapenemase-Producing Organisms: A Global Scourge. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 66(8), 1290–1297. https://doi.org/10.1093/cid/cix893
Chawla, K., Gurung, B., Mukhopadhyay, C., & Bairy, I. (2010). Reporting emerging resistance of Streptococcus pneumoniae from India. Journal of Global Infectious Diseases, 2(1), 10. https://doi.org/10.4103/0974-777x.59245
Chen, H.-H., Stringer, A., Eguale, T., Rao, G. G., & Ozawa, S. (2019). Impact of Antibiotic Resistance on Treatment of Pneumococcal Disease in Ethiopia: An Agent-Based Modeling Simulation. The American Journal of Tropical Medicine and Hygiene, 101(5), 1042–1053. https://doi.org/10.4269/ajtmh.18-0930
Cheong, D., & Song, J. Y. (2024). Pneumococcal disease burden in high-risk older adults: Exploring impact of comorbidities, long-term care facilities, antibiotic resistance, and immunization policies through a narrative literature review. Human Vaccines & Immunotherapeutics, 20(1). https://doi.org/10.1080/21645515.2024.2429235
Cillóniz, C., Garcia-Vidal, C., Ceccato, A., & Torres, A. (2018). Antimicrobial Resistance Among Streptococcus pneumoniae. Antimicrobial Resistance in the 21st Century, 13–38. https://doi.org/10.1007/978-3-319-78538-7_2
Davies, J., & Davies, D. (2010). Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433.
Dhawale, P., Shah, S., Sharma, K., Sikriwal, D., Kumar, V., Bhagawati, A., Dhar, S., Shetty, P., & Ahmed, S. (2025). Streptococcus pneumoniae serotype distribution in low- and middle-income countries of South Asia: Do we need to revisit the pneumococcal vaccine strategy?. Human Vaccines & Immunotherapeutics, 21(1). https://doi.org/10.1080/21645515.2025.2461844
Feldman, C., & Anderson, R. (2014). Recent advances in our understanding of Streptococcus pneumoniae infection. F1000Prime Reports, 6.https://doi.org/10.12703/p6-82
File, T. M. (2004). Streptococcus pneumoniae and community-acquired pneumonia: A cause for concern. The American Journal of Medicine Supplements, 117(3), 39–50. https://doi.org/10.1016/j.amjmed.2004.07.007
File, T. M. (2006). Clinical implications and treatment of multiresistant Streptococcus pneumoniae pneumonia. Clinical Microbiology and Infection, 12, 31–41.https://doi.org/10.1111/j.1469-0691.2006.01395.x
Gladstone, R. A., Devine, V., Jones, J., Cleary, D., Jefferies, J. M., Bentley, S. D., Faust, S. N., & Clarke, S. C. (2017). Pre-vaccine serotype composition within a lineage signposts its serotype replacement – a carriage study over 7 years following pneumococcal conjugate vaccine use in the UK. Microbial Genomics, 3(6). https://doi.org/10.1099/mgen.0.000119
Kim, L., McGee, L., Tomczyk, S., & Beall, B. (2016). Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective. Clinical Microbiology Reviews, 29(3), 525–552.https://doi.org/10.1128/cmr.00058-15
Kumar, P., Ray, A., Kumari, A., Sultana, A., Hora, R., Singh, K., Mehra, R., Kaur, A., Koshal, S. S., Quadri, S. F., Singh, S. K., & Roy, A. D. (2025). Chronicling the Journey of Pneumococcal Conjugate Vaccine Introduction in India. Vaccines, 13(4), 432. https://doi.org/10.3390/vaccines13040432
Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., Jelsbak, L., Sicheritz-Ponten, T., Ussery, D. W., Aarestrup, F. M., & Lund, O. (2012). Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. Journal of Clinical Microbiology, 50(4), 1355–1361. https://doi.org/10.1128/jcm.06094-11
Laxminarayan, R., & Chaudhury, R. R. (2016). Antibiotic Resistance in India: Drivers and Opportunities for Action. PLOS Medicine, 13(3), e1001974. https://doi.org/10.1371/journal.pmed.1001974
Lim, W. S. (2021). Pneumonia—Overview. Reference Module in Biomedical Sciences, 1(1), 185–197. https://doi.org/10.1016/b978-0-12-801238-3.11636-8
Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., Robles Aguilar, G., Mestrovic, T., Smith, G., Han, C., Hsu, R. L., Chalek, J., Araki, D. T., Chung, E., Raggi, C., Gershberg Hayoon, A., Davis Weaver, N., Lindstedt, P. A., Smith, A. E., & Altay, U. (2024). Global Burden of Bacterial Antimicrobial Resistance 1990–2021: a Systematic Analysis with Forecasts to 2050. The Lancet, 404(10459), 1199–1226. https://doi.org/10.1016/s0140-6736(24)01867-1
O’Neill, J. (2016, May 18). Tackling Drug-resistant Infections Globally: FInal Report and Recommendations. APO; Government of the United Kingdom. https://apo.org.au/node/63983
Richter, S. S., Heilmann, K. P., Dohrn, C. L., Riahi, F., Beekmann, S. E., & Doern, G. V. (2008). Accuracy of Phenotypic Methods for Identification of Streptococcus pneumoniae Isolates Included in Surveillance Programs. Journal of Clinical Microbiology, 46(7), 2184–2188. https://doi.org/10.1128/JCM.00461-08
Rie Isozumi, Ito, Y., Ishida, T., Osawa, M., Hirai, T., Ito, I., Ko Maniwa, Hayashi, M., Hitoshi Kagioka, Hirabayashi, M., Koichi Onari, Hiromi Tomioka, Keisuke Tomii, Iwao Gohma, Imai, S., Shunji Takakura, Yoshitsugu Iinuma, Ichiyama, S., & Mishima, M. (2007). Genotypes and Related Factors Reflecting Macrolide Resistance in Pneumococcal Pneumonia Infections in Japan. Journal of Clinical Microbiology, 45(5), 1440–1446. https://doi.org/10.1128/jcm.01430-06
Rodgers, G. L., & Klugman, K. P. (2015). Surveillance of the impact of pneumococcal conjugate vaccines in developing countries. Human Vaccines & Immunotherapeutics, 12(2), 417–420. https://doi.org/10.1080/21645515.2015.1057671
Sweileh, W. M. (2021). Global research publications on irrational use of antimicrobials: call for more research to contain antimicrobial resistance. Globalization and Health, 17(1). https://doi.org/10.1186/s12992-021-00754-9
Taneja, N., & Sharma, M. (2019). Antimicrobial resistance in the environment: The Indian scenario. The Indian Journal of Medical Research, 149(2), 119–128. https://doi.org/10.4103/ijmr.IJMR_331_18
Troeger, C., Blacker, B., Khalil, I. A., Rao, P. C., Cao, J., Zimsen, S. R. M., Albertson, S. B., Deshpande, A., Farag, T., Abebe, Z., Adetifa, I. M. O., Adhikari, T. B., Akibu, M., Al Lami, F. H., Al-Eyadhy, A., Alvis-Guzman, N., Amare, A. T., Amoako, Y. A., Antonio, C. A. T., & Aremu, O. (2018). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases, 18(11), 1191–1210. https://doi.org/10.1016/s1473-3099(18)30310-4
Veeraraghavan, B., & Kurien, T. (2011). Penicillin resistant Streptococcus pneumoniae in India: Effects of new clinical laboratory standards institute breakpoint and implications. Indian Journal of Medical Microbiology, 29(3), 317. https://doi.org/10.4103/0255-0857.83925
Yaghoubi, S., Zekiy, A. O., Krutova, M., Gholami, M., Kouhsari, E., Sholeh, M., Ghafouri, Z., & Maleki, F. (2021). Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. European Journal of Clinical Microbiology & Infectious Diseases, 41(7). https://doi.org/10.1007/s10096-020-04121-1
Zhanel, G. G., Simor, A. E., Vercaigne, L., Mandell, L., & the Canadian Carbapenem Discussion Group. (1998). Imipenem and Meropenem: Comparison of In Vitro Activity, Pharmacokinetics, Clinical Trials and Adverse Effects. Canadian Journal of Infectious Diseases, 9(4), 215–228. https://doi.org/10.1155/1998/831425![]() |
![]() |
![]() |
![]() |
![]() |