Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 15, Issue:1, January, 2026

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2026.15(1): 82-92
DOI: https://doi.org/10.20546/ijcmas.2026.1501.010


Prevalence and Antibiotic Susceptibility Patterns of Streptococcus pneumoniae isolated from hospitalized pneumonia patients in Beed, Maharashtra, India
Vidya V. Jadhav1* and K. V. Bartakke2
1Department of Microbiology, Mrs. Kesharbai Sonajirao Kshirsagar Alias Kaku Arts Science and Commerce College, Beed, India 2Swa. Sawarkar Mahavidyalay, Beed, India
*Corresponding author
Abstract:

Streptococcus pneumoniae is the most common cause of community-acquired and hospital-acquired pneumonia globally with little data on surveillance in semi-urban India. The ensuing spread of antimicrobial resistance has added to the complexity of the treatment outcomes especially in the under-resource districts like Beed, Maharashtra. In all, 150 throat swab specimens of clinically suspected pneumonia patients were obtained in four wards lasting 12-months between January 2022 and December 2022. S. pneumoniae was isolated and identified by classical phenotypic and biochemical testing including Gram staining, haemolysis, optochin susceptibility, bile dissolution and sugar fermentation patterns. Confirmed isolates were tested for antibiotic susceptibility with a broad spectrum of 0-lactams, macrolides, fluoroquinolones, tetracyclines, glycopeptides, carbapenems, and other agents which were interpreted according to CLSI guidelines. Out of 150 samples, 109 (72.6%) were confirmed as S. pneumoniae, with the highest distribution in ICU patients (28.4%). Males accounted for 56% of isolates. Antimicrobial susceptibility testing revealed high resistance to penicillin (47.7%), ampicillin (47.7%), azithromycin (70.6%), clindamycin (45%), tetracycline (42.2%), and trimethoprim–sulfamethoxazole (56.9%). In contrast, newer cephalosporins such as ceftaroline (81.6%) and cefepime (78.0%), along with carbapenems (78–81%), vancomycin (100%), linezolid (98.2%), and tigecycline (100%), demonstrated strong efficacy. Fluoroquinolones exhibited moderate susceptibility, with levofloxacin being the most effective (71.6%). The prevalence of S. pneumoniae multidrug-resistant strains is a concern in Beed; this incredibly represents both deficiencies in diagnosis and stewardship. The use of last-line antibiotics highlights the need to adopt rational prescribing, improve on vaccination coverage, and increase local resistance surveillance in order to minimize morbidity, mortality, and economic cost.


Keywords: Pneumonia, Streptococcus, Resistance, Antibiotics, Surveillance


References:

Aleem, M. S., Sexton, R., & Akella, J. (2020). Pneumonia In An Immunocompromised Patient. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557843

Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nature Reviews. Microbiology10(4), 266–278. https://doi.org/10.1038/nrmicro2761

Bonomo, R. A., Burd, E. M., Conly, J., Limbago, B. M., Poirel, L., Segre, J. A., & Westblade, L. F. (2018). Carbapenemase-Producing Organisms: A Global Scourge. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America66(8), 1290–1297. https://doi.org/10.1093/cid/cix893

Chawla, K., Gurung, B., Mukhopadhyay, C., & Bairy, I. (2010). Reporting emerging resistance of Streptococcus pneumoniae from India. Journal of Global Infectious Diseases2(1), 10. https://doi.org/10.4103/0974-777x.59245

Chen, H.-H., Stringer, A., Eguale, T., Rao, G. G., & Ozawa, S. (2019). Impact of Antibiotic Resistance on Treatment of Pneumococcal  Disease in Ethiopia: An Agent-Based Modeling Simulation. The American Journal of Tropical Medicine and Hygiene101(5), 1042–1053. https://doi.org/10.4269/ajtmh.18-0930

Cheong, D., & Song, J. Y. (2024). Pneumococcal disease burden in high-risk older adults: Exploring impact of comorbidities, long-term care facilities, antibiotic resistance, and immunization policies through a narrative literature review. Human Vaccines & Immunotherapeutics20(1). https://doi.org/10.1080/21645515.2024.2429235

Cillóniz, C., Garcia-Vidal, C., Ceccato, A., & Torres, A. (2018). Antimicrobial Resistance Among Streptococcus pneumoniaeAntimicrobial Resistance in the 21st Century, 13–38. https://doi.org/10.1007/978-3-319-78538-7_2

Davies, J., & Davies, D. (2010). Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews74(3), 417–433.

Dhawale, P., Shah, S., Sharma, K., Sikriwal, D., Kumar, V., Bhagawati, A., Dhar, S., Shetty, P., & Ahmed, S. (2025). Streptococcus pneumoniae serotype distribution in low- and middle-income countries of South Asia: Do we need to revisit the pneumococcal vaccine strategy?. Human Vaccines & Immunotherapeutics21(1). https://doi.org/10.1080/21645515.2025.2461844

Feldman, C., & Anderson, R. (2014). Recent advances in our understanding of Streptococcus pneumoniae infection. F1000Prime Reports6.https://doi.org/10.12703/p6-82

File, T. M. (2004). Streptococcus pneumoniae and community-acquired pneumonia: A cause for concern. The American Journal of Medicine Supplements117(3), 39–50. https://doi.org/10.1016/j.amjmed.2004.07.007

File, T. M. (2006). Clinical implications and treatment of multiresistant Streptococcus pneumoniae pneumonia. Clinical Microbiology and Infection12, 31–41.https://doi.org/10.1111/j.1469-0691.2006.01395.x

Gladstone, R. A., Devine, V., Jones, J., Cleary, D., Jefferies, J. M., Bentley, S. D., Faust, S. N., & Clarke, S. C. (2017). Pre-vaccine serotype composition within a lineage signposts its serotype replacement – a carriage study over 7 years following pneumococcal conjugate vaccine use in the UK. Microbial Genomics3(6). https://doi.org/10.1099/mgen.0.000119

Kim, L., McGee, L., Tomczyk, S., & Beall, B. (2016). Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective. Clinical Microbiology Reviews29(3), 525–552.https://doi.org/10.1128/cmr.00058-15

Kumar, P., Ray, A., Kumari, A., Sultana, A., Hora, R., Singh, K., Mehra, R., Kaur, A., Koshal, S. S., Quadri, S. F., Singh, S. K., & Roy, A. D. (2025). Chronicling the Journey of Pneumococcal Conjugate Vaccine Introduction in India. Vaccines13(4), 432. https://doi.org/10.3390/vaccines13040432

Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., Jelsbak, L., Sicheritz-Ponten, T., Ussery, D. W., Aarestrup, F. M., & Lund, O. (2012). Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. Journal of Clinical Microbiology50(4), 1355–1361. https://doi.org/10.1128/jcm.06094-11

Laxminarayan, R., & Chaudhury, R. R. (2016). Antibiotic Resistance in India: Drivers and Opportunities for Action. PLOS Medicine13(3), e1001974. https://doi.org/10.1371/journal.pmed.1001974

Lim, W. S. (2021). Pneumonia—Overview. Reference Module in Biomedical Sciences1(1), 185–197. https://doi.org/10.1016/b978-0-12-801238-3.11636-8

Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., Robles Aguilar, G., Mestrovic, T., Smith, G., Han, C., Hsu, R. L., Chalek, J., Araki, D. T., Chung, E., Raggi, C., Gershberg Hayoon, A., Davis Weaver, N., Lindstedt, P. A., Smith, A. E., & Altay, U. (2024). Global Burden of Bacterial Antimicrobial Resistance 1990–2021: a Systematic Analysis with Forecasts to 2050. The Lancet404(10459), 1199–1226. https://doi.org/10.1016/s0140-6736(24)01867-1

O’Neill, J. (2016, May 18). Tackling Drug-resistant Infections Globally: FInal Report and Recommendations. APO; Government of the United Kingdom. https://apo.org.au/node/63983

Richter, S. S., Heilmann, K. P., Dohrn, C. L., Riahi, F., Beekmann, S. E., & Doern, G. V. (2008). Accuracy of Phenotypic Methods for Identification of Streptococcus pneumoniae Isolates Included in Surveillance Programs.  Journal of Clinical Microbiology46(7), 2184–2188. https://doi.org/10.1128/JCM.00461-08

Rie Isozumi, Ito, Y., Ishida, T., Osawa, M., Hirai, T., Ito, I., Ko Maniwa, Hayashi, M., Hitoshi Kagioka, Hirabayashi, M., Koichi Onari, Hiromi Tomioka, Keisuke Tomii, Iwao Gohma, Imai, S., Shunji Takakura, Yoshitsugu Iinuma, Ichiyama, S., & Mishima, M. (2007). Genotypes and Related Factors Reflecting Macrolide Resistance in Pneumococcal Pneumonia Infections in Japan. Journal of Clinical Microbiology45(5), 1440–1446. https://doi.org/10.1128/jcm.01430-06

Rodgers, G. L., & Klugman, K. P. (2015). Surveillance of the impact of pneumococcal conjugate vaccines in developing countries. Human Vaccines & Immunotherapeutics12(2), 417–420. https://doi.org/10.1080/21645515.2015.1057671

Sweileh, W. M. (2021). Global research publications on irrational use of antimicrobials: call for more research to contain antimicrobial resistance. Globalization and Health17(1). https://doi.org/10.1186/s12992-021-00754-9

Taneja, N., & Sharma, M. (2019). Antimicrobial resistance in the environment: The Indian scenario. The Indian Journal of Medical Research149(2), 119–128. https://doi.org/10.4103/ijmr.IJMR_331_18

Troeger, C., Blacker, B., Khalil, I. A., Rao, P. C., Cao, J., Zimsen, S. R. M., Albertson, S. B., Deshpande, A., Farag, T., Abebe, Z., Adetifa, I. M. O., Adhikari, T. B., Akibu, M., Al Lami, F. H., Al-Eyadhy, A., Alvis-Guzman, N., Amare, A. T., Amoako, Y. A., Antonio, C. A. T., & Aremu, O. (2018). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Infectious Diseases18(11), 1191–1210. https://doi.org/10.1016/s1473-3099(18)30310-4

Veeraraghavan, B., & Kurien, T. (2011). Penicillin resistant Streptococcus pneumoniae in India: Effects of new clinical laboratory standards institute breakpoint and implications. Indian Journal of Medical Microbiology29(3), 317. https://doi.org/10.4103/0255-0857.83925

Yaghoubi, S., Zekiy, A. O., Krutova, M., Gholami, M., Kouhsari, E., Sholeh, M., Ghafouri, Z., & Maleki, F. (2021). Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. European Journal of Clinical Microbiology & Infectious Diseases41(7). https://doi.org/10.1007/s10096-020-04121-1

Zhanel, G. G., Simor, A. E., Vercaigne, L., Mandell, L., & the Canadian Carbapenem Discussion Group. (1998). Imipenem and Meropenem: Comparison of In Vitro Activity, Pharmacokinetics, Clinical Trials and Adverse Effects. Canadian Journal of Infectious Diseases9(4), 215–228. https://doi.org/10.1155/1998/831425

Download this article as Download

How to cite this article:

Vidya V. Jadhav and Bartakke, K. V. 2026. Prevalence and Antibiotic Susceptibility Patterns of Streptococcus pneumoniae isolated from hospitalized pneumonia patients in Beed, Maharashtra, India.Int.J.Curr.Microbiol.App.Sci. 15(1): 82-92. doi: https://doi.org/10.20546/ijcmas.2026.1501.010
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations