National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
This study screened the potential biocatalytic abilities of four hairy bracket mushroom (Trametes strains) strains. Commercially available potato dextrose broth (PDB) and a medium recommended by the Fungus/Mushroom Resource and Research Center (MA medium) were used for culturing these mushrooms. Good growth was observed in two strains –TUFC13731 and 31398– cultured using the PDB. The stereoselective reduction of α- and β-keto esters by these strains was investigated, and they were found to reduce various α-keto esters. Specifically, the reduction of α-keto esters by the PDB-cultivated T. hirsuta TUFC13731 strain in the presence of L-glutamate as an additive yielded the corresponding α-hydroxy esters with a high conversion ratio and excellent enantioselectivity. Furthermore, this strain stereospecifically reduced ethyl 2-methyl-3-oxobutanoate to (2S, 3S)-2-methyl-3-hydroxybutanoate, i.e., only one of the four theoretically possible isomers. Overall, hairy bracket mushrooms demonstrated great potential for application as biocatalysts for the stereoselective reduction of carbonyl compounds. The present study results also suggest that cryopreserved T. hirsuta cells can be used as biocatalysts for the asymmetric reduction of carbonyl compounds.
Begum, H.A., Ahmad, W., Rafiq, N., Ali, H., Hussain, S., Ali, B., Ullah, I., Baloch, I.A. and Khan, A, 2023. Exploring the pharmacological potential of Trametes hirsuta (white rot fungi): Analgesic, anti-inflammatory, antispasmodic and antimicrobial activities. Pure Appl. Biol. 12(2): 1183-1193. https://dx.doi.org/10.19045/bspab.2023.120121
Glazunova, O.A., Moiseenko, K.V. and Fedorova, T.V. 2024. Xenobiotic removal by Trametes hirsuta LE-BIN 072 activated carbon-based mycelial pellets: Remazol brilliant blue R case study. Water 16: 133. https://doi.org/10.3390/w16010133
Ishihara, K., Higashi, Y., Tsuboi, S. and Utaka, M. 1995. Effects of additives in the reduction using bakers’ yeast cell-free extract. Chem. Lett. 24: 253-254. https://doi.org/10.1246/cl.1995.253
Ishihara, K., Yamaguchi, H. and Nakajima, N. 2003. Stereoselective reduction of keto esters: thermophilic bacteria and microalgae as new biocatalysts. J. Mol. Cat. B: Enzym. 23: 171-189. https://doi.org/10.1016/S1381-1177(03)00081-X
Ishihara, K., Yamaguchi, H., Omori, T., Uemura, T., Nakajima, N. and Esaki, N. 2004a. A novel zinc-containing α-keto ester reductase from actinomycete: an approach based on protein chemistry and bioinformatics. Biosci. Biotechnol. Biochem. 68: 2120-2127.
Ishihara, K., H. Yamamoto, H., Mitsuhashi, K., Nishikawa, K., Tsuboi, S., Tuji, H. and Nakajima, N. 2004b. Purification and characterization of α-keto amide reductase from Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 68: 2306-2312.
Ishihara, K. and Nakajima, N. 2006. Stereoselective reduction of carbonyl compounds using the cell-free extract of the earthworm, Lumbricus rubellus, as a novel source of biocatalyst. Biosci. Biotechnol. Biochem. 70: 3077-3080. https://doi.org/10.1271/bbb.60408
Ishihara, K., Nishimura, M., Nakashima, K., Machii, N., Miyake, F., Nishi, M., Yoshida, M., Masuoka, N. and Nakajima, N. 2010. Preparation of chiral 2-chloromandelamide: stereoselective reduction of an aromatic α-keto amide with actinomycete. Biochemistry Insights. 3: 19-24. https://doi.org/10.4137/BCI.S4231
Ishihara, K., Iwai, R., Yoshida, M., Morishita, M., Yamaguchi, H. and Nakajima, N. 2011a. Purification and characterization of a novel keto ester reductase from the green alga, Chlorella sorokiniana: comparison of enzymological properties with other microbial keto ester reductases. World J. Microbiol. Biotechnol. 27: 17-24. https://doi.org/10.1007/s11274-010-0421-8
Ishihara, K., Nagai, H., Takahashi, K., Nishiyama, M. and Nakajima, N. 2011b. Stereoselective reduction of α-keto ester and α-keto amide with marine actinomycetes, Salinispora strains, as novel biocatalysts. Biochem. Insights. 4: 29-33. https://doi.org/10.4137/BCI.S7877
Ishihara, K., Nishikawa, Y., Kaneko, M., Kinoshita, A., Kumazawa, N., Kobashigawa, D., Kuroda, K., Osawa, M., Yamamoto, T., Nakajima, N., Hamada, H. and Masuoka, N. 2012. The ability of edible mushrooms to act as biocatalysts: preparation of chiral alcohols using basidiomycete strains. Adv. Microbiol. 2: 66-71. https://doi.org/10.4236/aim.2012.22008
Ishihara, K., Fujimoto, H., Kodani, M., Mouri, K., Yamamoto, T., Ishida, M., Maruike, K., Hamada, H., Nakajima, N. and Masuoka, N. 2013. Biocatalyst activity of entomogenous fungi: stereoselective reduction of carbonyl compounds using tochukaso and related species. Int. J. Curr. Microbiol. App. Sci. 2: 188-197.
Ishihara, K., Kondo, A., Kashima, H., Yoshimura, T., Hori, G., Hamada, H. and Masuoka, N. 2015. Biocatalytic preparation of chiral alcohols: stereoselective reduction of carbonyl compounds using two strains of the streptomycetaceae family - Streptacidiphilus and Kitasatospora. Int. J. Curr. Microbiol. App. Sci. 10: 300-309.
Ishihara, K., Chiba, A., Onishi, K., Okawa, A., Mizote, Y., Uesugi, D., Masuoka, N., Nakajima, N., and H. Hamada. 2017. Microbial preparation of chiral alcohols: stereoselective reduction of carbonyl compounds using two genera of the streptosporangiaceae family - Streptosporangium and Nonomuraea. Int. J. Curr. Microbiol. App. Sci. 6: 707-171. http://dx.doi.org/10.20546/ijcmas.2016.502.090
Ishihara, K., Morita, K., Nishimori, Y., Okamoto, S., Hiramatsu, T., Okawa, A., Uesugi, D., Yanagi, M., Hamada, H., Masuoka, N. and Nakajima, N. 2019a. Biocatalytic reduction of carbonyl compounds by actinobacteria from two genera of the micromonosporaceae family: Actinoplanes and Dactylosporangium. https://doi.org/10.20546/ijcmas.2019.804.106
Ishihara, K., Adachi, N., Mishima, T., Kuboki, C., Shuto, A., Okamoto, K., Inoue, M., Hamada, H., Uesugi, D., Masuoka, N. and Nakajima, N. 2019b. Microbial production of chiral hydroxy esters and their analogs: biocatalytic reduction of carbonyl compounds by actinobacteria, Agromyces and Gordonia strains. Adv. Enzym. Res. 7: 15-25. https://doi.org/10.4236/aer.2019.72002
Ishihara, K., Oka, S., Hayashi, Y., Kondo, Y., Kitagawa, Y., Shimoda, K., Masuoka, N. and Nakajima, N. 2022. Biocatalytic preparation of chiral alcohols with micro green algae: bio-reduction of carbonyl compounds by Chlorogonium strains as a novel biocatalyst. Int. J. Curr. Microbiol. App. Sci. 11: 6-12. https://doi.org/10.20546/ijcmas.2022.1104.002
Ishihara, K., Takaki, Y., Masuoka, N. and Shimoda, K. 2024. Biocatalytic preparation of chiral hydroxy esters using entomogenous fungi: bio-reduction of keto esters by tochukaso and related species. Int. J. Curr. Microbiol. App. Sci. 13: 155-163. https://doi.org/10.20546/ijcmas.2024.1306.017
Kataoka, M., Doi, Y., Sim, TS., Shimizu, S. and Yamada, H. 1992. A novel NADPH-dependent carbonyl reductase of Candida macedoniensis: purification and characterization. Arch. Biochem. Biophys. 294: 469-474.https://doi.org/10.1016/0003-9861(92)90713-7
Kawai, Y., Kondo, S., Tsujimoto, M., Nakamura, K. and Ohno, A. 1994. Stereochemical control in microbial reduction. XXIII. Thermal treatment of bakers’ yeast for controlling the stereoselectivity of reductions. Bull. Chem. Soc. Jpn. 67: 2244-2247. https://doi.org/10.1246/bcsj.67.2244
Kawai, Y., Takanobe, K. and Ohno, A. 1995. Stereochemical control in microbial reduction. XXV. Additives controlling diastereoselectivity in a microbial reduction of ethyl 2-methyl-3-oxobutanoate. Bull. Chem. Soc. Jpn. 68: 285-288. https://doi.org/10.1246/bcsj.68.285
Mitsuhashi, K. and Yamamoto, H. 2005. Method for producing optically active mandelic acid derivative. Japan Kokai Tokkyo Koho. 2005-295817 (Oct. 27).
Nakamura, K., Inoue, K., Ushio, K., Oka, S. and Ohno, A. 1988. Stereochemical control on yeast reduction of α-keto esters. Reduction by immobilized bakers’ yeast in hexane. J. Org. Chem. 53: 2589-2593. https://doi.org/10.1021/jo00246a035
Nakamura, K., Kondo, S., Nakajima, N. and Ohno, A. 1994. Purification and characterization of α-keto ester reductases from bakers' yeast. Biosci. Biotechnol. Biochem. 58: 2239-2240. https://doi.org/10.1271/bbb.58.2236
Nakamura, K., Kondo, S., Kawai, Y., Hida, K., Kitano, K. and Ohno, A. 1996. Enantio- and regioselective reduction of α-diketones by baker’s yeast. Tetrahedron: Asymmetry. 7: 409-412. https://doi.org/10.1016/0957-4166(96)00020-1
Qi, Y., Ming, Y., Zhong, Y., Lin, X., Hou, C., Zhengjiang, L., Yong, C., Shuya, L., Jianxin, B., Jian, X., Hanjie, Y. and Pingkai, O. 2009. A new member of the short-chain dehydrogenases/ reductases superfamily: purification, characterization and substrate specificity of a recombinant carbonyl reductase from Pichia stipitis. Bioresor. Technol. 100: 6022-6027. https://doi.org/10.1016/j.biotech.200906.014
Yamaguchi, H., Nakajima, N. and Ishihara, K. 2002. Purification and characterization of two α-keto ester reductases from Streptomyces thermocyaneoviolaceus IFO14271. Biosci. Biotechnol. Biochem. 66: 588-597. https://doi.org/10.1271/bbb.66.588![]() |
![]() |
![]() |
![]() |
![]() |