National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Staphylococcus aureus is a Gram-positive bacterium that can cause various diseases and infections. Penicillin and methicillin are examples of β-lactam antibiotics, the first line of defense against Staphylococcus aureus infections. Methicillin-Resistant Staphylococcus aureus (MRSA) is still one of the leading causes of hospital-acquired infections associated with morbidity, mortality, and cost. MRSA can be hospital-acquired (HA-MRSA) or community-associated (CA-MRSA) infections. The main objective of this study is to screen MRSA among HA-MRSA to determine the prevalence of antibiotic susceptibility patterns of MRSA among patients. Furthermore, we identify the mecA gene, which produces a penicillin-binding protein (PBP2a) with a low affinity for β-lactam antibiotics. This study was done on the patients of Kathmandu Model Hospital, Nepal, and the samples were processed at the Microbiology laboratory of Kathmandu Model Hospital. Data analyses were done from Microsoft Excel and GraphPad Prism. DNA extraction was done from the classical CTAB method with minor modifications, and mecA gene-specific primers were used to detect the gene in the samples. Out of 4383 samples, 848 (21.00%) samples have growth, and 190(22.4%) were Staphylococcus aureus. Among Staphylococcus aureus 52 (27.36%) were Methicillin resistant Staphylococcus aures. Antibiotic susceptibility tests were done to characterize MRSA isolates. Most of the isolates were resistant to Amikacin (69.25%), followed by Ampicillin (53.8%), Chloramphenicol (78.84%), Cotrimoxazole (53.8%), Gentamycin (67.3%), Ofloxacin (15.39%), Erythromycin (71.15%) Vancomycin and Teicoplanin (3.84%). In our study, 50 (96.15%) out of 52 MRSA strains showed the presence of the mecA gene, while 3.85% showed the absence of the mecA gene.The frequency of MRSA infections in HA-MRSA was comparatively high, with a greater abundance of the mecA gene that confers resistance. Regular surveillance of HA-MRSA and genetic profiling of the mecA gene are essential for reducing MRSA infection.
Al-Ruaily, M.A. and Khalil, O.M. (2011). Detection of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) at Prince A/Rhman Sidery Hospital, Al-Jouf, Saudi Arabia. Journal of Medical Genetics and Genomics, 3(3), pp. 41–45.
Archer, G.L. (1998). Staphylococcus aureus: a well-armed pathogen. Clinical Infectious Diseases, 26(5), pp. 1179–1181. https://doi.org/10.1086/520289
Ba, X., Harrison, E.M., Edwards, G.F., Holden, M.T.G., Larsen, A.R., Petersen, A., Skov, R.L., Peacock, S.J., Parkhill, J., Paterson, G.K. and Holmes, M.A. (2014). Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. Journal of Antimicrobial Chemotherapy, 69(3), pp. 594–597. https://doi.org/10.1093/jac/dkt418
Becker, K., Heilmann, C. and Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), pp. 870–926. https://doi.org/10.1128/CMR.00109-13
Bhatt, P., Tandel, K., Singh, A., Mugunthan, M., Grover, N. and Sahni, A.K. (2016). Species distribution and antimicrobial resistance pattern of coagulase-negative Staphylococci at a tertiary care centre. Medical Journal, Armed Forces India, 72(1), pp. 71–74. https://doi.org/10.1016/j.mjafi.2014.12.007
Butler-Laporte, G., De L’Étoile-Morel, S., Cheng, M.P., McDonald, E.G. and Lee, T.C. (2018). MRSA colonization status as a predictor of clinical infection: A systematic review and meta-analysis. Journal of Infection, 77(6), pp. 489–495. https://doi.org/10.1016/j.jinf.2018.08.004
CLSI. “Performance Standards for Antimicrobial Susceptibility Testing.” 30th Ed. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
Carroll, K.C. (2008). Rapid diagnostics for methicillin-resistant Staphylococcus aureus: current status. Molecular Diagnosis & Therapy, 12(1), pp. 15–24. https://doi.org/10.1007/BF03256265
Chen, H., Li, L., Wu, M., Xu, S., Wang, M., Li, J. and Huang, X. (2018). Efficacy and safety of linezolid versus teicoplanin for the treatment of MRSA infections: a meta-analysis. Journal of Infection in Developing Countries, 11(12), pp. 926–934. https://doi.org/10.3855/jidc.9447
Davies, J.A., Anderson, G.K., Beveridge, T.J. and Clark, H.C. (1983). Chemical mechanism of the Gram stain and synthesis of a new electron-opaque marker for electron microscopy which replaces the iodine mordant of the stain. Journal of Bacteriology, 156(2), pp. 837–845. https://doi.org/10.1128/jb.156.2.837-845.1983
Deresinski, S. (2005). Methicillin-resistant Staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey. Clinical Infectious Diseases, 40(4), pp. 562–573. https://doi.org/10.1086/427701
Dhungel, S., Rijal, K.R., Yadav, B., Dhungel, B., Adhikari, N., Shrestha, U.T., Adhikari, B., Banjara, M.R. and Ghimire, P. (2021). Methicillin-resistant Staphylococcus aureus (MRSA): prevalence, antimicrobial susceptibility pattern, and detection of the mecA gene among cardiac patients from a tertiary care heart center in Kathmandu, Nepal. Infectious Diseases: Research and Treatment, 14, p. 11786337211037355. https://doi.org/10.1177/11786337211037355
Diller, R., Sonntag, A.K., Mellmann, A., Grevener, K., Senninger, N., Kipp, F. and Friedrich, A.W. (2008). Evidence for cost reduction based on pre-admission MRSA screening in general surgery. International Journal of Hygiene and Environmental Health, 211(1–2), pp. 205–212. https://doi.org/10.1016/j.ijheh.2007.06.001
Forbes, Betty A., Daniel F. Sahm, and Alice S. Weissfeld. Diagnostic microbiology. St Louis: Mosby, 2007.
Fu, J., Ye, X., Chen, C. and Chen, S. (2013). The efficacy and safety of linezolid and glycopeptides in the treatment of Staphylococcus aureus infections. PLoS One, 8(3), p. e58240. https://doi.org/10.1371/journal.pone.0058240
Garau, J., Bouza, E., Chastre, J., Gudiol, F. and Harbarth, S. (2009). Management of methicillin-resistant Staphylococcus aureus infections. Clinical Microbiology and Infection, 15(2), pp. 125–136. https://doi.org/10.1111/j.1469-0691.2009.02701.x
Ghia, C.J., Waghela, S. and Rambhad, G. (2020). A systematic literature review and meta-analysis reporting the prevalence and impact of methicillin-resistant Staphylococcus aureus infection in India. Infectious Diseases: Research and Treatment, 13, p. 1178633720970569. https://doi.org/10.1177/1178633720970569
Hadyeh, E., Azmi, K., Seir, R.A., Abdellatief, I. and Abdeen, Z. (2019). Molecular characterization of methicillin-resistant Staphylococcus aureus in West Bank–Palestine. Frontiers in Public Health, 7, p. 130. https://doi.org/10.3389/fpubh.2019.00130
Iwamoto, M., Mu, Y., Lynfield, R., Bulens, S.N., Nadle, J., Aragon, D., Petit, S., Ray, S.M., Harrison, L.H., Dumyati, G., Townes, J.M., Schaffner, W., Gorwitz, R.J. and Lessa, F.C. (2013). Trends in invasive methicillin-resistant Staphylococcus aureus infections. Pediatrics, 132(4), pp. e817–e824. https://doi.org/10.1542/peds.2013-1112
Jacqueline, C., Caillon, J., Le Mabecque, V., Miegeville, A.F., Donnio, P.Y., Bugnon, D. and Potel, G. (2003). In vitro activity of linezolid alone and in combination with gentamicin, vancomycin or rifampicin against methicillin-resistant Staphylococcus aureus by time-kill curve methods. Journal of Antimicrobial Chemotherapy, 51(4), pp. 857–864. https://doi.org/10.1093/jac/dkg160
Khanal, L.K., Adhikari, R.P. and Guragain, A. (2018). Prevalence of methicillin-resistant Staphylococcus aureus and antibiotic susceptibility pattern in a tertiary hospital in Nepal. Journal of Nepal Health Research Council, 16(2), pp. 172–174.
Krishnan, P.U., Miles, K. and Shetty, N. (2002). Detection of methicillin and mupirocin resistance in Staphylococcus aureus isolates using conventional and molecular methods: a descriptive study from a burns unit with a high prevalence of MRSA. Journal of Clinical Pathology, 55(10), pp. 745–748. https://doi.org/10.1136/jcp.55.10.745
Kupfer, M., Jatzwauk, L., Monecke, S., Möbius, J. and Weusten, A. (2010). MRSA in a large German university hospital: male gender is a significant risk factor for MRSA acquisition. GMS Krankenhaushygiene Interdisziplinär, 5(2), Doc11. https://doi.org/10.3205/dgkh000154
Lee, A.S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A. and Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4, p. 18033. https://doi.org/10.1038/nrdp.2018.33
Lim, D. and Strynadka, N.C.J. (2002). Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nature Structural Biology, 9(11), pp. 870–876. https://doi.org/10.1038/nsb858
McTavish, S.M., Snow, S.J., Cook, E.C., Pichon, B., Coleman, S., Coombs, G.W., Pang, S., Arias, C.A., Díaz, L., Boldock, E., Davies, S., Udukala, M., Kearns, A.M., Siribaddana, S. and de Silva, T.I. (2019). Genomic and epidemiological evidence of a dominant Panton–Valentine leucocidin-positive methicillin-resistant Staphylococcus aureus lineage in Sri Lanka and presence among isolates from the United Kingdom and Australia. Frontiers in Cellular and Infection Microbiology, 9, p. 123. https://doi.org/10.3389/fcimb.2019.00123
Moran, G.J., Krishnadasan, A., Gorwitz, R.J., Fosheim, G.E., McDougal, L.K., Carey, R.B., Talan, D.A. and EMERGEncy ID Net Study Group (2006). Methicillin-resistant Staphylococcus aureus infections among patients in the emergency department. New England Journal of Medicine, 355(7), pp. 666–674.https://doi.org/10.1056/NEJMoa055356
Neupane, S., Acharya, A. and Subedi, S., 2025. Investigating the Genetics and Antibiotic Resistance of Methicillin Resistant Staphylococcus aureus in Biological Samples from Hospitalized Patients. medRxiv, pp.2025-04.
Pai, V., Rao, V.I. and Rao, S.P., 2010. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus [MRSA] isolates at a tertiary care hospital in Mangalore, South India. Journal of laboratory physicians, 2(02), pp.082-084.
Pillai, M.M., Latha, R. and Sarkar, G. (2012). Detection of methicillin resistance in Staphylococcus aureus by polymerase chain reaction and conventional methods: a comparative study. Journal of Laboratory Physicians, 4(2), pp. 83–88. https://doi.org/10.4103/0974-2727.105587
Pournajaf, A., Ardebili, A., Goudarzi, L., Khodabandeh, M., Narimani, T. and Abbaszadeh, H. (2014). PCR-based identification of methicillin-resistant Staphylococcus aureus strains and their antibiotic resistance profiles. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), pp. S293–S297. https://doi.org/10.12980/APJTB.4.2014C423
Remschmidt, C., Schneider, S., Meyer, E., Schroeren-Boersch, B., Gastmeier, P. and Schwab, F. (2017). Surveillance of antibiotic use and resistance in intensive care units (SARI). Deutsches Ärzteblatt International, 114(50), pp. 858–865. https://doi.org/10.3238/arztebl.2017.0858
Sabir, R., Alvi, S.F., Fawwad, A. and Basit, A. (2014). Antibiogram of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in patients with diabetes. Pakistan Journal of Medical Sciences, 30(4), pp. 814–818. https://doi.org/10.12669/pjms.304.4755
Schönfeld, V., Diercke, M., Gilsdorf, A., Eckmanns, T. and Walter, J. (2018). Evaluation of the statutory surveillance system for invasive MRSA infections in Germany, 2016–2017. BMC Public Health, 18(1), p. 1063. https://doi.org/10.1186/s12889-018-5971-y
Shahi, K., Rijal, K.R., Adhikari, N., Shrestha, U.T., Banjara, M.R., Sharma, V.K. and Ghimire, P., 2018. Methicillin resistant Staphylococcus aureus: prevalence and antibiogram in various clinical specimens at Alka Hospital. Tribhuvan University Journal of Microbiology, 5, pp.77-82.
Shukla, S., Nixon, M., Acharya, M., Korim, M.T. and Pandey, R. (2009). Incidence of MRSA surgical-site infection in MRSA carriers in an orthopaedic trauma unit. Journal of Bone and Joint Surgery. British Volume, 91(2), pp. 225–228. https://doi.org/10.1302/0301-620X.91B2.21715
Vatansever, L., Sezer, Ç. and Bilge, N. (2016). Carriage rate and methicillin resistance of Staphylococcus aureus in food handlers in Kars City, Turkey. SpringerPlus, 5, p. 608. https://doi.org/10.1186/s40064-016-2278-2
Wielders, C.L., Fluit, A.C., Brisse, S., Verhoef, J. and Schmitz, F.J. (2002). mecA gene is widely disseminated in the Staphylococcus aureus population. Journal of Clinical Microbiology, 40(11), pp. 3970–3975. https://doi.org/10.1128/JCM.40.11.3970-3975.2002
Xu, J., Moore, J.E., Murphy, P.G., Millar, B.C. and Elborn, J.S. (2004). Early detection of Pseudomonas aeruginosa: comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis. Annals of Clinical Microbiology and Antimicrobials, 3, p. 21. https://doi.org/10.1186/1476-0711-3-21
![]() |
![]() |
![]() |
![]() |
![]() |