National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Pigeon pea (Cajanus cajan L.) is a legume with an important source of proteins, grown in several tropical and subtropical regions. However, despite its great importance, especially in tropical regions facing food and nutritional insecurity, pigeon pea remains one of the oldest and least valued food crops in West Africa, particularly in Senegal. The aim of this study was to contribute to a better understanding of the diversity of rhizobia associated with three pigeon pea provenances in three regions of Senegal (Fatick, Nioro and Kaffrine), with a view to their exploitation as microbial biofertilizers. Soil samples were collected from rhizosphere of pigeon pea plants in the three regions. Shadehouse trials were carried out to determine the most probable number of bacteria (MPN), as well as the phenotypic and genetic diversity of rhizobia by trapping with pigeon pea seeds from the three provenances. The results revealed a variability in MPN between the three study sites. Bacterial isolation from root nodules determined that pigeon pea associates more with fast-growing bacteria. A collection of 87 isolates was obtained from the plant nodules cultivated in the three sites. Amplification of the rDNA ITS region, followed by enzymatic digestion, disclosed 35 genetic profiles, including 4 common to Fatick and Kaffrine, 2 to Fatick and Kaffrine, 1 to Nioro and Kaffrine, 8 specific to Fatick, 8 to Kaffrine and 5 to Nioro. At the end of the infectivity test with 56 bacterial isolates, considered under controlled conditions, only 29 re-infected the host-plant. A positive effect of inoculation with some bacterial isolates (F12p, N23, N22, N5, K3 and K16p) was noted for chlorophyll content and certain plant growth parameters (nodule number and weight, shoot and root dry weight). This study underlined that some of the bacterial strains may be potential candidates for improving growth and productivity of pigeon pea in Senegal.
Allito B.B., Ewusi-Mensah N., Logah V. et al. (2021). Legume-rhizobium specificity effect on nodulation, biomass production and partitioning of faba bean (Vicia faba L.). Scientific Reports, 11, 3678. https://doi.org/10.1038/s41598-021-83235-8
Alon M., Dovrat G., Masci, T. & Sheffer, E. (2021). Soil nitrogen regulates symbiotic nitrogen fixation in a legume shrub but does not accumulate under it. Ecosphere, 12(12), e03843.https://doi.org/10.1002/ecs2.3843
Baldermann S., Blagojevi? L., Frede K., Klopsch R., Neugart S., Neumann A., Ngwene B., Norkeweit J., Schröter D., Schröter A., Schweigert F.J., Wiesner M. & Schreiner M. (2016). Are Neglected Plants the Food for the Future? Critical Reviews in Plant Sciences, 35(2), 106?119. https://doi.org/10.1080/07352689.2016.1201399
Basile LA & Lepek VC. 2021. Legume-rhizobium dance: an agricultural tool that could be improved? Microb Biotechnol. 2021 Sep;14(5):1897-1917. https://doi.org/10.1111/1751-7915.13906
Chalasani D., Basu A., Pullabhotla S.V.S.R.N., Jorrin B., Neal A.L., Poole P.S., Podile A.R. & Tkacz, A. (2021). Poor Competitiveness of Bradyrhizobium in Pigeon Pea Root Colonization in Indian Soils. mBio, 12(4), e00423-21. https://doi.org/10.1128/mbio.00423-21
de Andrade F.M., de Assis Pereira T., Souza T.P., Guimarães P.H.S., Martins A.D., Schwan R.F., Pasqual M. & Dória, J. (2019). Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiological research, 223, 120?128. https://doi.org/10.1016/j.micres.2019.04.005
Diedhiou I., Diedhiou A.G., & Diouf, D. (2022). Les symbioses fixatrices d’azote?: Types et régulateurs transcriptionnels de la nodulation. International Journal of Biological and Chemical Sciences, 16(2), 695?712. http://ajol.info/index.php/ijbcs
Duguma H.T. (2020). Wild Edible Plant Nutritional Contribution and Consumer Perception in Ethiopia. International Journal of Food Science, 1?16. https://doi.org/10.1155/2020/2958623
Falola A., Mukaila R., Lawal T.F. & Akinsuyi M. (2022). Commercialization of pigeon pea production?: Its determinants and constraints. Tekirda? Ziraat Fakültesi Dergisi, 19(4), 840?849. https://doi.org/10.33462/jotaf.1113523
Ferreira I. C., Morales P. & Barros L. (2017). Wild plants, mushrooms and nuts?: Functional food properties and applications. John Wiley & Sons, 496 pages.
Fisher, R. A. & Yates F. (1963). Statistical tables for biological, agricultural and medical research, edited by R. fisher and F. Yates. Edinburgh: Oliver and Boyd. Biometrical journal fmi, 225-286.
FAO, IFAD, UNICEF, WFP and WHO (2025). The State of Food Security and Nutrition in the World 2025 – Addressing high food price inflation for food security and nutrition. Rome. https://doi.org/10.4060/cd6008en
Fossou K.R. (2011). Diversité génétique des rhizobia associés à un champ de pois d’Angole (Cajanus cajan L.) à Yamoussoukro (Centre de la Côte d’Ivoire). Mémoire de fin d’études pour l’obtention du diplôme d’Agronomie Approfondie, Ecole Supérieure d’Agronomie de Yamoussoukro (Côte d’Ivoire), 63.
Fossou R.K., Kouassi N., Kouadjo G.C.Z., Zako S. & Zeze A. (2012). Diversité de rhizobia dans un champ cultivé de pois d’angole (Cajanus cajan L.) (légumineuses) à Yamoussoukro (centre Côte d’Ivoire). Agronomie Africaine, 24(1), 29?38.
Fatokimi E. & Tanimonure V.A. (2021). Analysis of the current situation and future outlooks for pigeon pea (Cajanus cajan) production in Oyo State, Nigeria: A Markov Chain model approach. Journal of Agriculture and Food Research 6(2):100218. https://doi.org/10.1016/j.jafr.2021.100218
Faye A., Stewart Z.P., Diome K., Edward C.T., Fall D., Ganyo D.K.K., Akplo T.M. & Prasad, P.V.V. (2021). Single Application of Biochar Increases Fertilizer Efficiency, C Sequestration, and pH over the Long-Term in Sandy Soils of Senegal. Sustainability, 13 (21), 11817. https://doi.org/10.3390/su132111817
Geremu T., Abera G., Lemma B. & Rasche F. (2025). Abundance and symbiotic efficiency of indigenous rhizobia nodulating faba bean and common bean in southern Ethiopia. Frontiers in Soil Sciences, 5:1568292. https://doi.org/10.3389/fsoil.2025.1568292
Jaiswal S. K. & Dakora F. D. (2025). Maximizing Photosynthesis and Plant Growth in African Legumes Through Rhizobial Partnerships: The Road Behind and Ahead. Microorganisms, 13(3), 581.https://doi.org/10.3390/microorganisms13030581
Jeevarathinam G. & Chelladurai V. (2020). Pigeon Pea. In A. Manickavasagan et P. Thirunathan (Éds.), Pulses (p. 275?296). Springer International Publishing
Jorrin B., Maluk M., Atoliya N., Kumar S.C., Chalasani D., Tkacz A., Singh P., Basu A., Pullabhotla S. V. & Kumar M. (2021). Genomic diversity of pigeon pea (Cajanus cajan L. Millsp.) endosymbionts in India and selection of potential strains for use as agricultural inoculants. Frontiers in plant science, 12, 680981. https://doi.org/10.3389/fpls.2021.680981
Kazi?nien? J., Gegeckas A., Lapinskien? L., Razbadauskien? K., Mažylyt? R. & Supronien? S. (2025). Competitiveness and Nitrogen Fixation Efficiency Analysis of Rhizobium leguminosarum Strains in Different Field Pea (Pisum sativum L.) Genotypes. Agriculture, 15(16), 1784. https://doi.org/10.3390/agriculture15161784
Kebede E., Amsalu B., Argaw A. & Tamiru S. (2022). Nodulation potential and phenotypic diversity of rhizobia nodulating cowpea isolated from major growing areas of Ethiopia. Agrosystems, Geosciences et Environment, 5(4), e20308. https://doi.org/10.1002/agg2.20308
Krasova-Wade T., Ndoye I., Braconnier S., Sarr B., de Lajudie P. & Neyra. M. 2003. Diversity of indigeneous bradyrhizobia associated with three cowpea cultivars (Vigna unguiculata (L.) Walp.) grow under limited and favorable water conditions in Senegal (West Africa). African Journal of Biotechnology, 2(1):13-22. https://doi.org/10.5897/AJB2003.000-1003
Khuntia D., Pand N., Mandal M., Swain P., Sahu S.G. & Pattanayak S.K. (2022). Symbiotic Effectiveness of Acid Tolerant Nodulating Rhizobia on Growth, Yield and Nutrient Uptake of Pigeon pea (Cajanus cajan L.) in Acidic Alfisols. International Journal of Bio-resource and Stress Management, 13(4), 403-410. https://doi.org/10.23910/1.2022.2550
Lam D. (2025). The Next 2 Billion: Can the World Support 10 Billion People?. Population and Development Review, 51: 63-102. https://doi.org/10.1111/padr.12685
Mathieu C. & Pieltain F. 2003. Analyse Chimique des Sols: Méthodes Choisies; Edition Tec & Doc: Montpellier, France, 387p.
Namuyiga D.B., Stellmacher T., Borgemeister C. & Groot J.C.J. (2022). A Typology and Preferences for Pigeon Pea in Smallholder Mixed Farming Systems in Uganda. Agriculture, 12(8), 1186. https://doi.org/10.3390/agriculture12081186
Normand P., Ponsonnet C., Nesme X., Neyra M. Simonet P. (1996). ITS analysis of prokaryotes. Molecular Microbial Ecology Manual (Akkermans DL, van Elsas JD et de Bruijn EI, eds). Kluwer Academic Publishers, Amsterdam.
Pazhamala L., Saxena R.K., Singh V.K., Sameerkumar C.V., Kumar V., Sinha P., Patel K., Obala J., Kaoneka S.R. & Tongoona P. (2015). Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan). Frontiers in plant science, 6, 50. https://doi.org/10.3389/fpls.2015.00050
Revellin, C. (2012). Les symbioses fixatrices d’azote. Alliances au pays des racines-14 e Colloque Scientifique de la Société d’Horticulture de France, Paris, FRANCE.
Sane C.A.B., Rouland-Lefevre C., Grechi I., Rey J.Y., Vayssieres J.F., Diame L. & Diarra K. 2016. Diversité, nuisances et modes de gestion des termites (Isoptera) dans les agrosystèmes sénégalais. International Journal of Biological and Chemical Sciences, 10(1): 134-154, http://dx.doi.org/10.4314/ijbcs.v10i1.10
Sene G., Ndiaye B.D., Cissoko M., Niang N., Ndiaye C., Fall S. & Sylla S.N. (2023). Growth promotion and yield attribute improvement of five groundnut (Arachis hypogaea L.) varieties by the application of plant growth promoting rhizobacteria. African Journal of Agricultural Research, 19(12): 1151-1160. http://dx.doi.org/10.5897/AJAR2023.16553
Somasegaran P. and Hoben H.J. (1994). Quantifying the Growth of Rhizobia. In P. Somasegaran and H. J. Hoben, Handbook for Rhizobia (p. 47?57). Springer New York.
Sukati M. (2020). National Income and Malnutrition in Africa: A Rapid Overview. Advances in Pediatrics & Neonatal care, 113. https://doi.org/10.29011/APNC-113.100013
UNSCN. 2020 – The COVID-19 pandemic is disrupting people’s food environments: a resource list on Food Systems and Nutrition responses-UNSCN. Unscn.org
Vincent J.M. (1970). A manual for the practical study of the root-nodule bacteria. A manual for the practical study of the root-nodule bacteria.
Woliy K., Degefu T. & Frostegård Å. (2019). Host range and symbiotic effectiveness of N2O reducing Bradyrhizobium strains. Frontiers in Microbiology, 10, 2746. https://doi.org/10.3389/fmicb.2019.02746
Woomer P.L. (2010). Biological nitrogen fixation and grain legume enterprise?: Guidelines for N2 Africa lead farmers. Tropical soil biology and fertility institute of the international centre for tropical agriculture. Nairobi/International Institute of Tropical Agriculture, Ibadan Nigeria, 21.
Yeremko, L., Czopek, K., Staniak, M., Marenych, M., & Hanhur, V. (2025). Role of Environmental Factors in Legume-Rhizobium Symbiosis: A Review. Biomolecules, 15(1), 118. https://doi.org/10.3390/biom15010118
Zhang Z.Y., Qiang F.F., Liu G.Q., Liu C.H. & Ai N. (2023). Distribution characteristics of soil microbial communities and their responses to environmental factors in the sea buckthorn forest in the water-wind erosion crisscross region. Frontiers in Microbiology, 13:1098952. https://doi.org/10.3389/fmicb.2022.1098952
Zhao J., Gao A., Wang B., Wen J., Duan Y., Wang G. & Li Z. (2025). Modeling and Visualization of Nitrogen and Chlorophyll in Greenhouse Solanum lycopersicum L. Leaves with Hyperspectral Imaging for Nitrogen Stress Diagnosis. Plants (Basel), 14(21):3276. https://doi.org/10.3390/plants14213276
![]() |
![]() |
![]() |
![]() |
![]() |