Antimicrobial Resistance in Escherichia coli
Jyotsna Joy* and M. Shanmugavadivu
PG and Research Department of Biotechnology, Dr.N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, India
*Corresponding author
Abstract:
Escherichia coli multidrug resistance is becoming an alarming worldwide issue in veterinary well-being in addition to human medicine. Almost all to treat essential antimicrobial drugs can naturally create Escherichia coli to become aware. However, this bacterial species can rapidly acquire resistance genes, primarily through the horizontal transfer of genes. The most problematic mechanisms in E. coli correspond to the acquisition of genes coding for extended spectrum β?lactamases, carbapenemases, 16S rRNA methylases, plasmid?mediated quinolone resistance (PMQR) genes, and mobilized colistin resistance (MCR) genes. Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in E. coli seems rather to be related to the use of colistin in veterinary medicine on a global scale. Though genetic studies show that the extended-spectrum β-lactamase producers found in animals are different from those that afflict humans, the cross-transfer of these resistance traits between the human and animal sectors is still a source of contention Resistance genes appeared to spread mostly by plasmids, especially multi - resistance plasmids, but also through other movable elements in gene including gene cassettes and transposons in class 1 and class 2 integrous.
Keywords: Multidrug resistance, Escherichia coli, carbapenemase genes, colistin, dissemination of resistance genes
References:
- Kaper, J. B., Nataro, J. P., & Mobley, H. L. T. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology, 2(2), 123 140. https://doi.org/10.1038/nrmicro818
- Kolenda, R., Burdukiewicz, M., & Schierack, P. (2015). A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic coli. Frontiers in Cellular and Infection
- Meganck, V., Hoflack, G., & Opsomer, G. (2014). Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Veterinaria Scandinavica, 56. https://doi.org/10.1186/s13028-014-0075-x
- Poirel, L., Madec, J., Lupo, A., Schink, A., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6. https://doi.org/10.1128/microbiolspec.arba-0026-2017
- Rhouma, M., Beaudry, F., Thériault, W., & Letellier, A. (2016). Colistin in pig Production: chemistry, mechanism of antibacterial action, microbial resistance emergence, and One Health perspectives. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01789
- Leekitcharoenphon, P., Johansson, M. H. K., Munk, P., Malorny, B., Skar?y?ska, M., Wadepohl, K., Moyano, G., Hesp, A., Veldman, K. T., Bossers, A., Graveland, H., Van Essen, A., Battisti, A., Caprioli, A., Blaha, T., Hald, T., Daskalov, H., Saatkamp, H. W., Stärk, K. D. C.,... Aarestrup, F. M. (2021). Genomic evolution of antimicrobial resistance in Escherichia coli. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-93970-7
- Kim, C., Riley, A., Sriharan, S., Nartea, T., Ndegwa, E., Dhakal, R., Zheng, G., & Baffaut, C. (2024). Examining Antimicrobial Resistance in Escherichia coli: A Case Study in Central Virginia’s Environment. Antibiotics, 13, 223. https://doi.org/10.3390/antibiotics13030223
- Liu, C., Sun, S., Sun, Y., Li, X., Gu, W., Luo, Y., Wang, N., & Wang, Q. (2024). Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. The Science of the Total Environment, 939, 173498. https://doi.org/10.1016/j.scitotenv.2024.173498
- Ibrahim, N., Boyen, F., Mohsin, M. a. S., Ringenier, M., Berge, A. C., Chantziaras, I., Fournié, G., Pfeiffer, D., & Dewulf, J. (2023). Antimicrobial Resistance in Escherichia coli and Its Correlation with Antimicrobial Use on Commercial Poultry Farms in Bangladesh. Antibiotics, 12, 1361. https://doi.org/10.3390/antibiotics12091361
- Lim, S., Kang, H. Y., Lee, K., Moon, D., Lee, H., & Jung, S. (2016). First Detection of the mcr-1 Gene in Escherichia coli Isolated from Livestock between 2013 and 2015 in South Korea. Antimicrobial Agents and Chemotherapy, 60(11), 6991–6993. https://doi.org/10.1128/aac.01472-16
- Blomfield, C. (2024b). Aminoglycosides: drugs (list, names, classification, instructions for use). Medicine Helpful.
- Sunde, M. (2005). Prevalence and characterization of class 1 and class 2 integrons in Escherichia coli isolated from meat and meat products of Norwegian origin. Journal of Antimicrobial Chemotherapy, 56(6), 1019–1024. https://doi.org/10.1093/jac/dki377
- Rahman, S., & Hollis, A. (2023). The effect of antibiotic usage on resistance in humans and food-producing animals: a longitudinal, One Health analysis using European data. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1170426
- Sidjabat, H. (2011). Insights into a Multidrug Resistant Escherichia coli Pathogen of the Globally Disseminated ST131 Lineage: Genome Analysis and Virulence Mechanisms.
- Nwaiwu O., Onyeaka H. (2021). Acquired antimicrobial resistance genes of Escherichia coli obtained from Nigeria: in silico genome analysis. Journal of Food Quality and Hazards Control. 8: 186-189.
- Luna-Guevara, J. J., Arenas-Hernandez, M. M. P., de la Peña, C. M., Silva, J. L., and Luna-Guevara, M. L. (2019). The role of Pathogenic coliin fresh vegetables: behavior, contamination factors, and preventive measures. Int. J. Microbiol 2019: 2894328.
- Poole, N. M., Green, S. I., Rajan, A., Vela, L. E., Zeng, X.-L., Estes, M. K., et al., (2017). Role for FimH in Extraintestinal pathogenic Escherichia coliinvasion and translocation through the intestinal epithelium. Immun. 85, 1–17. https://doi.org/10.1128/iai.00581-17
- Possas, A., and Pérez-Rodríguez, F. (2023). New insights into cross-contamination of fresh-produce. Opin. Food Sci.49:100954. https://doi.org/10.1016/j.cofs.2022.100954
- Sharma, S., Bhat, G., and Shenoy, S. (2007). Virulence factors and drug resistance in Escherichia coliisolated from extraintestinal infections. Indian J. Med. Microbiol.25, 369–373. https://doi.org/10.1016/S0255-0857(21)02053-3
- Tiedje, J. M., Fu, Y., Mei, Z., Schäffer, A., Dou, Q., Amelung, W., et al., (2023). Antibiotic resistance genes in food production systems support one health opinions. Opin. Environ. Sci. Heal. 34: 100492. https://doi.org/10.1016/j.coesh.2023.100492
- Yoo, B. K., Liu, Y., Juneja, V., Huang, L., and Hwang, C.-A. (2015). Growth characteristics of Shiga toxin-producing Escherichia coli(STEC) stressed by chlorine, sodium chloride, acid, and starvation on lettuce and cantaloupe. Food Control 55, 97–102. https://doi.org/10.1016/j.foodcont.2015.02.040
Download this article as
Citations