SARS-CoV-2: A Comprehensive Review of its Biology, Immunity, and Therapeutic Solutions
1Department of Microbiology, ZSCT’s Thakur Shyamnarayan Degree College, Kandivali Mumbai- 4000101, India 2Department of Microbiology, Kishichand Chellaram College, Mumbai-400020, India 3Department of Microbiology, Guru Nanak Khalsa College of Arts, Science and Commerce, Dadar, Mumbai -400019, India
*Corresponding author
Abstract:
The global emergence of SARS-CoV-2 has led to an unprecedented health crisis, underscoring the critical importance of understanding its biology to inform control measures, immunity, and treatment approaches. This review explores the virus’s structural and genomic characteristics, including the spike protein and mechanisms of host cell entry, and compares SARS-CoV-2 with related coronaviruses, SARS-CoV and MERS-CoV. An analysis of transmission dynamics highlights factors such as viral load, routes of exposure, and host susceptibility, which together shape the virus’s spread. We further examine the pathogenesis of SARS-CoV-2, detailing its replication cycle, host-pathogen interactions, and impact on multiple organ systems. The immune response to SARS-CoV-2 is assessed through both innate and adaptive mechanisms, shedding light on immune evasion strategies and implications for long-term immunity. The role of immune memory and the potential for reinfection are discussed in the context of emerging viral variants, which pose challenges to vaccine efficacy and herd immunity efforts. This review also covers therapeutic strategies, including antiviral drugs, immunomodulators, and vaccines, alongside promising new treatments under investigation. Finally, we address challenges in SARS-CoV-2 research and propose directions for future studies, emphasizing the lessons learned from this pandemic to enhance preparedness for future outbreaks. Through a comprehensive synthesis of current knowledge, this review aims to contribute to the ongoing efforts to mitigate SARS-CoV-2’s impact on global health.
Keywords: SARS-CoV-2, COVID-19, Viral structure, Spike protein, ACE2 receptor, Immune evasion, Antiviral therapies, Monoclonal antibodies, Vaccine efficacy, Variants of concern
References:
- Aguilera, B., Donya, R. S., Vélez, C.-M., Kapiriri, L., Abelson, J., Nouvet, E., Danis, M., Goold, S., Williams, I., & Noorulhuda, M. (2024). Stakeholder participation in the COVID-19 pandemic preparedness and response plans: A synthesis of findings from 70 countries. Health Policy, 142, 1050 https://doi.org/10.1016/j.healthpol.2024.105013
- Ahmadi, S., Bazargan, M., Elahi, R., & Esmaeilzadeh, A. (2023). Immune evasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); molecular approaches. Molecular immunology, 156, 10–19. https://doi.org/10.1016/j.molimm.2022.11.020
- Alaa Alnefaie, Sarah Albogami, Current approaches used in treating COVID-19 from a molecular mechanisms and immune response perspective, Saudi Pharmaceutical Journal, Volume28, Issue11, 2020, Pages 1333-1352, ISSN 1319-0164, https://doi.org/10.1016/j.jsps.2020.08.024 .
- Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th New York: Garland Science; 2002. Helper T Cells and Lymphocyte Activation. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26827/
- Aledo-Serrano, A., Gil-Nagel, A., Isla, J., Mingorance, A., Mendez-Hermida, F., & Hernandez-Alcoceba, R. (2021). Gene therapies and COVID-19 vaccines: a necessary discussion in relation with viral vector-based approaches. Orphanet journal of rare diseases, 16(1), 3 https://doi.org/10.1186/s13023-021-01958-3
- Alhamlan, F. S., & Al-Qahtani, A. A. (2025). SARS-CoV-2 Variants: Genetic Insights, Epidemiological Tracking, and Implications for Vaccine Strategies. International journal of molecular sciences, 26(3), 1263. https://doi.org/10.3390/ijms26031263
- Alijotas-Reig, J., Esteve-Valverde, E., Belizna, C., Selva-O’Callaghan, A., Pardos-Gea, J., Quintana, A., Mekinian, A., Anunciacion-Llunell, A., & Miró-Mur, F. (2020). Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmunity reviews, 19(7), 102569. https://doi.org/10.1016/j.autrev.2020.102569
- Al-Momani, H., Aolymat, I., Almasri, M., Mahmoud, S. A., & Mashal, S. (2023). Prevalence of gastro-intestinal symptoms among COVID-19 patients and the association with disease clinical outcomes. Future science OA, 9(5), FSO858. https://doi.org/10.2144/fsoa-2023-0040
- Ashraf, U. M., Abokor, A. A., Edwards, J. M., Waigi, E. W., Royfman, R. S., Hasan, S. A., Smedlund, K. B., Hardy, A. M. G., Chakravarti, R., & Koch, L. G. (2021). SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological genomics, 53(2), 51–60. https://doi.org/10.1152/physiolgenomics.00087.2020
- Atef, S., Al Hosani, F., AbdelWareth, L., Al-Rifai, R. H., Abuyadek, R., Jabari, A., Ali, R., Altrabulsi, B., Dunachie, S., Alatoom, A., & Donnelly, J. G. (2023). Susceptibility to reinfection with SARS-CoV-2 virus relative to existing antibody concentrations and T cell response. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 131, 100–110. https://doi.org/10.1016/j.ijid.2023.01.006
- Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M. C., O’Mahony, L., Gao, Y., Nadeau, K., & Akdis, C. A. (2020). Immune response to SARS-CoV2 and mechanisms of immunopathological changes in COVID-19. Allergy, 75(7), 1564–1581. https://doi.org/10.1111/all.14364
- Azuma, K., Yanagi, U., Kagi, N., Kim, H., Ogata, M., & Hayashi, M. (2020). Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environmental health and preventive medicine, 25(1), 66. https://doi.org/10.1186/s12199-020-00904-2
- Bai, Z., Cao, Y., Liu, W., & Li, J. (2021). The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine M Viruses, 13(6), 1115. https://doi.org/10.3390/v13061115
- Balcio?lu, B. K., Den?zc? ÖncÜ, M., ÖztÜrk, H. Ü., YÜcel, F., Kaya, F., Serhatli, M., Ülbe?? Polat, H., Tek?n, ?., & Özdem?r Bahadir, A. (2020). SARS-CoV-2 neutralizing antibody development strategies. Turkish journal of biology = Turk biyoloji dergisi, 44(3), 203–214. https://doi.org/10.3906/biy-2005-91
- Barros de Lima, G., Nencioni, E., Thimoteo, F., Perea, C., Pinto, R. F. A., & Sasaki, S. D. (2025). TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules, 15(1), 75. https://doi.org/10.3390/biom15010075
- Beyer, D. K., & Forero, A. (2022). Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. Journal of molecular biology, 434(6), 167265. https://doi.org/10.1016/j.jmb.2021.167265
- Borges do Nascimento, I. J., Pizarro, A. B., Almeida, J. M., Azzopardi-Muscat, N., Gonçalves, M. A., Björklund, M., & Novillo-Ortiz, D. (2022). Infodemics and health misinformation: a systematic review of reviews. Bulletin of the World Health Organization, 100(9), 544–561. https://doi.org/10.2471/BLT.21.287654
- Buchy, P., Buisson, Y., Cintra, O., Dwyer, D. E., Nissen, M., Ortiz de Lejarazu, R., & Petersen, E. (2021). COVID-19 pandemic: Lessons learned from more than a century of pandemics and current vaccine development for pandemic control. International Journal of Infectious Diseases, 112, 300–317. https://doi.org/10.1016/j.ijid.2021.09.045
- Bullen, M., Heriot, G. S., & Jamrozik, E. (2023). Herd immunity, vaccination and moral obligation. Journal of medical ethics, 49(9), 636–641. https://doi.org/10.1136/jme-2022108485
- Candido, K. L., Eich, C. R., de Fariña, L. O., Kadowaki, M. K., da Conceição Silva, J. L., Maller, A., & Simão, R. C. G. (2022). Spike protein of SARS-CoV-2 variants: a brief review and practical implications. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology], 53(3), 1133–1157. https://doi.org/10.1007/s42770-022-00743-z
- Cano RLE, Lopera HDE. Introduction to T and B lymphocytes. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 5.
- Chatterjee, S., Bhattacharya, M., Dhama, K., Lee, S. S., & Chakraborty, C. (2023). Molnupiravir’s mechanism of action drives “error catastrophe” in SARS-CoV-2: A therapeutic strategy that leads to lethal mutagenesis of the virus. Molecular therapy. Nucleic acids, 33, 49– https://doi.org/10.1016/j.omtn.2023.06.006
- Chattopadhyay, S., Chen, J. Y., Chen, H. W., & Hu, C. J. (2017). Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics, 1(3), 244– 260. https://doi.org/10.7150/ntno.19796
- Chavda, V. P., Jogi, G., Dave, S., Patel, B. M., Vineela Nalla, L., & Koradia, K. (2023). mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown!. Vaccines, 11(3), https://doi.org/10.3390/vaccines11030507
- Chen, B., Julg, B., Mohandas, S., Bradfute, S. B., & RECOVER Mechanistic Pathways Task Force (2023). Viral persistence, reactivation, and mechanisms of long COVID. eLife, 12, e86015. https://doi.org/10.7554/eLife.86015
- Chen, P., Wu, M., He, Y., Jiang, B., & He, M. L. (2023). Metabolic alterations upon SARSCoV-2 infection and potential therapeutic targets against coronavirus infection. Signal transduction and targeted therapy, 8(1), 237. https://doi.org/10.1038/s41392-023-01510-8
- Chen, Q., Zhang, J., Wang, P., & Zhang, Z. (2022). The mechanisms of immune response and evasion by the main SARS-CoV-2 variants. iScience, 25(10), 105044. https://doi.org/10.1016/j.isci.2022.105044
- Cimolai N. (2021). Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clinical hematology international, 3(2), 47–68. https://doi.org/10.2991/chi.k.210328.001
- Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & growth factor reviews, 54, 62–75. https://doi.org/10.1016/j.cytogfr.2020.06.001
- Coutinho, A. E., & Chapman, K. E. (2011). The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and cellular endocrinology, 335(1), 2–1 https://doi.org/10.1016/j.mce.2010.04.005
- Dalskov, L., Gad, H. H., & Hartmann, R. (2023). Viral recognition and the antiviral interferon response. The EMBO journal, 42(14), e112907. https://doi.org/10.15252/embj.2022112907
- Datta, P. K., Liu, F., Fischer, T., Rappaport, J., & Qin, X. (2020). SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics, 10(16), 7448–7464. https://doi.org/10.7150/thno.48076
- Dhawan, M., Priyanka, Parmar, M., Angural, S., & Choudhary, O. P. (2022). Convalescent plasma therapy against the emerging SARS-CoV-2 variants: Delineation of the potentialities and risks. International journal of surgery (London, England), 97, 106204. https://doi.org/10.1016/j.ijsu.2021.106204
- Du, P., Geng, J., Wang, F., Chen, X., Huang, Z., & Wang, Y. (2021). Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome. International journal of medical sciences, 18(6), 1356–1362. https://doi.org/10.7150/ijms.53564
- Elekhnawy, E., Kamar, A.A. & Sonbol, F. Present and future treatment strategies for coronavirus disease 2019. Futur J Pharm Sci 7, 84 (2021). https://doi.org/10.1186/s43094-02100238-y
- Farrukh, H., El-Sayes, N., & Mossman, K. (2021). Mechanisms of PD-L1 Regulation in Malignant and Virus-Infected Cell International journal of molecular sciences, 22(9), 4893. https://doi.org/10.3390/ijms22094893
- Galati, D., Zanotta, S., Capitelli, L., & Bocchino, M. (2022). A bird’s eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy, 77(1), 100–110. https://doi.org/10.1111/all.15004
- Ghattas, M., Dwivedi, G., Lavertu, M., & Alameh, M. G. (2021). Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines, 9(12), 1490. https://doi.org/10.3390/vaccines9121490
- Ghildiyal, T., Rai, N., Mishra Rawat, J., Singh, M., Anand, J., Pant, G., Kumar, G., & Shidiki, A. (2024). Challenges in Emerging Vaccines and Future Promising Candidates against SARS-CoV-2 Variants. Journal of immunology research, 2024, 9125398. https://doi.org/10.1155/2024/9125398
- Gong, W., Parkkila, S., Wu, X., & Aspatwar, A. (2022). SARS-CoV-2 variants and COVID19 vaccines: Current challenges and future strategies. International Reviews of Immunology, 42(6), 393–414. https://doi.org/10.1080/08830185.2022.2079642
- Gonzalez-Garcia, P., Fiorillo Moreno, O., Zarate Peñata, E., Calderon-Villalba, A., Pacheco Lugo, L., Acosta Hoyos, A., Villarreal Camacho, J. L., Navarro Quiroz, R., Pacheco Londoño, L., Aroca Martinez, G., Moares, N., Gabucio, A., Fernandez-Ponce, C., Garcia-Cozar, F., & Navarro Quiroz, E. (2023). From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. International journal of molecular sciences, 24(9), 8290. https://doi.org/10.3390/ijms24098290
- Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. The Journal of biological chemistry, 295(20), 6785–6797. https://doi.org/10.1074/jbc.RA120.013679
- Gorkhali, R., Koirala, P., Rijal, S., Mainali, A., Baral, A., & Bhattarai, H. K. (2021). Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins. Bioinformatics and biology insights, 15, 11779322211025876. https://doi.org/10.1177/11779322211025876
- Goyal, R., Gautam, R. K., Chopra, H., Dubey, A. K., Singla, R. K., Rayan, R. A., & Kamal, M. A. (2022). Comparative highlights on MERS-CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI journal, 21, 1245–1272. https://doi.org/10.17179/excli2022-5355
- Guo, W., Fu, Y., Jia, R., Guo, Z., Su, C., Li, J., Zhao, X., Jin, Y., Li, P., Fan, J., Zhang, C., Qu, P., Cui, H., Gao, S., Cheng, H., Li, J., Li, X., Lu, B., Xu, X., & Wang, Z. (2022). Visualization of the infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward. Environment international, 162, 107153. https://doi.org/10.1016/j.envint.2022.107153
- Haiyue Huang, Hun Park, Yihan Liu, Jiaxing Huang, On-Mask Chemical Modulation of Respiratory Droplets, Matter, Volume 3, Issue 5, 2020, Pages 1791-1810, ISSN 2590-2385, https://doi.org/10.1016/j.matt.2020.10.012.
- Harrison, A. G., Lin, T., & Wang, P. (2020). Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in immunology, 41(12), 1100–1115. https://doi.org/10.1016/j.it.2020.10.004
- Hassan, S. S., Choudhury, P. P., Dayhoff, G. W., 2nd, Aljabali, A. A. A., Uhal, B. D., Lundstrom,, Rezaei, N., Pizzol, D., Adadi, P., Lal, A., Soares, A., Mohamed Abd El-Aziz, T., Brufsky, A. M., Azad, G. K., Sherchan, S. P., Baetas-da-Cruz, W., Takayama, K., Serrano-Aroca, Ã., Chauhan, G., Palu, G., … Uversky, V. N. (2022). The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Archives of biochemistry and biophysics, 717, 109124. https://doi.org/10.1016/j.abb.2022.109124
- Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID19. Nature reviews. Microbiology, 19(3), 141–154. https://doi.org/10.1038/s41579-02000459-7
- Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID19. Acta pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-04854
- Islam, M. A. (2023). A review of SARS-CoV-2 variants and vaccines: Viral properties, mutations, vaccine efficacy, and safety. Infectious Medicine, 2(4), 247–261. https://doi.org/10.1016/j.imj.2023.08.005
- Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th New York: Garland Science; 2001. Immunological memory. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27158/
- Kane, B. A., Bryant, K. J., McNeil, H. P., & Tedla, N. T. (2014). Termination of immune activation: an essential component of healthy host immune responses. Journal of innate immunity, 6(6), 727–738. https://doi.org/10.1159/000363449
- Kany, S., Vollrath, J. T., & Relja, B. (2019). Cytokines in Inflammatory Disease. International journal of molecular sciences, 20(23), 6008. https://doi.org/10.3390/ijms20236008
- Katiyar, H., Arduini, A., Li, Y., & Liang, C. (2024). SARS-CoV-2 Assembly: Gaining Infectivity and Beyond. Viruses, 16(11), 1648. https://doi.org/10.3390/v16111648
- Kaushik, A., Fomicheva, J., Boonstra, N., Faber, E., Gupta, , & Kest, H. (2025). Pediatric Vaccine Hesitancy in the United States-The Growing Problem and Strategies for Management Including Motivational Interviewing. Vaccines, 13(2), 115. https://doi.org/10.3390/vaccines13020115
- Khaledi, M., Sameni, F., Yahyazade, S., Radandish, M., Owlia, P., Bagheri, N., Afkhami, H., Mahjoor, M., Esmaelpour, Z., Kohansal, M., & Aghaei, F. (2022). COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Frontiers in medicine, 9, 961 https://doi.org/10.3389/fmed.2022.961027
- Khoshnood, S., Ghanavati, R., Shirani, M., Ghahramanpour, H., Sholeh, M., Shariati, A., Sadeghifard, N., & Heidary, M. (2022). Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Frontiers in microbiology, 13, 984536. https://doi.org/10.3389/fmicb.2022.984536
- Kindler, E., Thiel, V., & Weber, F. (2016). Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Advances in virus research, 96, 219–243. https://doi.org/10.1016/bs.aivir.2016.08.006
- Kopa?ska, M., Barna?, E., B?ajda, J., Kuduk, B., ?agowska, A., & Bana?-Z?bczyk, A. (2022). Effects of SARS-CoV-2 Inflammation on Selected Organ Systems of the Human Body. International journal of molecular sciences, 23(8), 4178. https://doi.org/10.3390/ijms23084178
- Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
- Le, K., Kannappan, S., Kim, T., Lee, J. H., Lee, H. R., & Kim, K. K. (2023). Structural understanding of SARS-CoV-2 virus entry to host cells. Frontiers in molecular biosciences, 10, 1288686. https://doi.org/10.3389/fmolb.2023.1288686
- Legrand, M., Bell, S., Forni, L., Joannidis, M., Koyner, J. L., Liu, K., & Cantaluppi, V. (2021). Pathophysiology of COVID-19-associated acute kidney injury. Nature reviews. Nephrology, 17(11), 751–764. https://doi.org/10.1038/s41581-021-00452-0
- Li F. (2016). Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual review of virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
- Liu, Q., Chi, S., Dmytruk, K., Dmytruk, O., & Tan, S. (2022). Coronaviral Infection and Interferon Response: The Virus-Host Arms Race and COVID-19. Viruses, 14(7), 1349. https://doi.org/10.3390/v14071349
- Manfrini, N., Notarbartolo, S., Grifantini, R., & Pesce, E. (2024). SARS-CoV-2: A Glance at the Innate Immune Response Elicited by Infection and Vaccination. Antibodies (Basel, Switzerland), 13(1), 13. https://doi.org/10.3390/antib13010013
- Meng, J., Li, R., Zhang, Z., Wang, J., Huang, Q., Nie, D., Fan, K., Guo, W., Zhao, Z., & Han, (2022). A Review of Potential Therapeutic Strategies for COVID-19. Viruses, 14(11), 2346. https://doi.org/10.3390/v14112346
- Meyerowitz, A., & Richterman, A. (2022). SARS-CoV-2 Transmission and Prevention in the Era of the Delta Variant. Infectious disease clinics of North America, 36(2), 267–293. https://doi.org/10.1016/j.idc.2022.01.007
- Milne, G., Hames, T., Scotton, C., Gent, N., Johnsen, A., Anderson, R. M., & Ward, T. (2021). Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? The Lancet. Respiratory medicine, 9(12), 1450–1466. https://doi.org/10.1016/S22132600(21)00407-0
- Minkoff, J.M., tenOever, B. Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol 21, 178–194 (2023). https://doi.org/10.1038/s41579-022-00839-1
- Morais da Silva, M., Lira de Lucena, A. S., Paiva Júnior, S. S. L., Florêncio De Carvalho, V. M., Santana de Oliveira, P. S., da Rosa, M. M., Barreto de Melo Rego, M. J., Pitta, M. G. D. R., & Pereira, M. C. (2022). Cell death mechanisms involved in cell injury caused by SARSCoV-2. Reviews in medical virology, 32(3), e2292. https://doi.org/10.1002/rmv.2292
- Morales-Hernández, S., Ugidos-Damboriena, N., & López-Sagaseta, J. (2022). SelfAssembling Protein Nanoparticles in the Design of Vaccines: 2022 Update. Vaccines, 10(9), 1447. https://doi.org/10.3390/vaccines10091447
- Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et biophysica acta. Molecular basis of disease, 1866(10), 165878. https://doi.org/10.1016/j.bbadis.2020.165878
- Nunes, M. C., Thommes, E., Fröhlich, H., Flahault, A., Arino, J., Baguelin, M., Biggerstaff, M., Bizel-Bizellot, G., Borchering, R., Cacciapaglia, G., Cauchemez, S., Barbier-Chebbah, A., Claussen, C., Choirat, C., Cojocaru, M., Commaille-Chapus, C., Hon, C., Kong, J., Lambert, N., Lauer, K. B., Coudeville, L. (2024). Redefining pandemic preparedness: Multidisciplinary insights from the CERP modelling workshop in infectious diseases, workshop report. Infectious Disease Modelling, 9(2), 501–518. https://doi.org/10.1016/j.idm.2024.02.008
- Okuyama R. (2023). mRNA and Adenoviral Vector Vaccine Platforms Utilized in COVID19 Vaccines: Technologies, Ecosystem, and Future Directions. Vaccines, 11(12), 1737. https://doi.org/10.3390/vaccines11121737
- Onakpoya, I. J., Heneghan, C. J., Spencer, E. A., Brassey, J., Plüddemann, A., Evans, D. H., Conly, J. M., & Jefferson, T. (2021). SARS-CoV-2 and the role of fomite transmission: a systematic review. F1000Research, 10, 233. https://doi.org/10.12688/f1000research.51590.3
- Pilz, S., Theiler-Schwetz, V., Trummer, C., Krause, R., & Ioannidis, J. P. A. (2022). SARSCoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. Environmental research, 209, 112911. https://doi.org/10.1016/j.envres.2022.112911
- Primorac, D., Vrdoljak, K., Brlek, P., Paveli?, E., Molnar, V., Matiši?, V., Erceg Ivkoši?, I., & Par?ina, M. (2022). Adaptive Immune Responses and Immunity to SARS-CoV-2. Frontiers in immunology, 13, 848582. https://doi.org/10.3389/fimmu.2022.848582
- Rabaan, A. A., Smajlovi?, S., Tombuloglu, H., ?ordi?, S., Hajdarevi?, A., Kudi?, N., Al Mutai, A., Turkistani, S. , Al-Ahmed, S. H., Al-Zaki, N. A., Al Marshood, M. J., Alfaraj, A. H., Alhumaid, S., & Al-Suhaimi, E. (2023). SARS-CoV-2 infection and multi-organ system damage: A review. Biomolecules & biomedicine, 23(1), 37–52. https://doi.org/10.17305/bjbms.2022.7762
- Rahmah, L., Abarikwu, S. O., Arero, A. G., Essouma, M., Jibril, A. T., Fal, A., Flisiak, R., Makuku, R., Marquez, L., Mohamed, K., Ndow, L., Zar?bska-Michaluk, D., Rezaei, N., & Rzymski, P. (2022). Oral antiviral treatments for COVID-19: opportunities and challenges. Pharmacological reports: PR, 74(6), 1255–1278. https://doi.org/10.1007/s43440-022-003887
- Rampersad, S., & Tennant, P. (2018). Replication and Expression Strategies of Viruses. Viruses, 55–82. https://doi.org/10.1016/B978-0-12-811257-1.00003-6
- Rasool, G., Khan, W. A., Khan, A. M., Riaz, M., Abbas, M., Rehman, A. U., Irshad, S., & Ahmad, S. (2024). COVID-19: A threat to the respiratory system. International journal of immunopathology and pharmacology, 38, 3946320241310307. https://doi.org/10.1177/03946320241310307
- Rodrigues, C. M. C., & Plotkin, S. A. (2020). Impact of Vaccines; Health, Economic and Social Perspectives. Frontiers in microbiology, 11, 1526. https://doi.org/10.3389/fmicb.2020.01526
- Rubio-Casillas, A., Redwan, E. M., & Uversky, V. N. (2022). SARS-CoV-2: A Master of Immune Evasion. Biomedicines, 10(6), 1339. https://doi.org/10.3390/biomedicines10061339
- Sacchi, A., Giannessi, F., Sabatini, A., Percario, Z. A., & Affabris, E. (2023). SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness?. International journal of molecular sciences, 24(11), 9353. https://doi.org/10.3390/ijms24119353
- Sayahinouri, M., Mashayekhi Firouz, S., Ebrahimi Sadrabadi, A., Masoudnia, M., Abdolahi, M., Jafarzadeh, F., Nouripour, M., Mirzazadeh, S., Zangeneh, , Jalili, A., & Aghdami, N. (2023). Functionality of immune cells in COVID-19 infection: development of cell-based therapeutics. BioImpacts: BI, 13(2), 159–179. https://doi.org/10.34172/bi.2023.23839
- Schiuma, G., Beltrami, S., Bortolotti, D., Rizzo, S., & Rizzo, R. (2022). Innate Immune Response in SARS-CoV-2 Infection. Microorganisms, 10(3), 501. https://doi.org/10.3390/microorganisms10030501
- Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0
- Shenoy S. (2021). SARS-CoV-2 (COVID-19), viral load and clinical outcomes; lessons learned one year into the pandemic: A systematic review. World journal of critical care medicine, 10(4), 132–150. https://doi.org/10.5492/wjccm.v10.i4.132
- Silva, M. J. A., Ribeiro, R., Lima, K. V. B., & Lima, L. N. G. C. (2022). Adaptive immunity to SARS-CoV-2 infection: A systematic review. Frontiers in immunology, 13, 1001198. https://doi.org/10.3389/fimmu.2022.1001198
- Speiser, D. E., & Bachmann, M. F. (2020). COVID-19: Mechanisms of Vaccination and Immunity. Vaccines, 8(3), 404. https://doi.org/10.3390/vaccines8030404
- Sunagar, R., Singh, A., & Kumar, S. (2023). SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines, 11(4), 849. https://doi.org/10.3390/vaccines11040849
- Tang, S., Mao, Y., Jones, R. M., Tan, Q., Ji, J. S., Li, N., Shen, J., Lv, Y., Pan, L., Ding, P., Wang, X., Wang, Y., MacIntyre, C. R., & Shi, X. (2020). Aerosol transmission of SARS-CoV2? Evidence, prevention and control. Environment international, 144, 106039. https://doi.org/10.1016/j.envint.2020.106039
- Taylor, P. C., Adams, A. C., Hufford, M. M., de la Torre, I., Winthrop, K., & Gottlieb, R. L. (2021). Neutralizing monoclonal antibodies for treatment of COVID-19. Nature reviews. Immunology, 21(6), 382–393. https://doi.org/10.1038/s41577-021-00542-x
- Te Velthuis, A. J., Arnold, J. J., Cameron, C. E., van den Worm, S. H., & Snijder, E. J. (2010). The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic acids research, 38(1), 203–214. https://doi.org/10.1093/nar/gkp904
- Thakur, S., Sasi, S., Pillai, S. G., Nag, A., Shukla, D., Singhal, R., Phalke, S., & Velu, G. S. K. (2022). SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Frontiers in medicine, 9, 815389. https://doi.org/10.3389/fmed.2022.815389
- Tharayil, A., Rajakumari, R., Mozetic, M., Primc, G., & Thomas, S. (2021). Contact transmission of SARS-CoV-2 on fomite surfaces: surface survival and risk reduction. Interface focus, 12(1), 20210042. https://doi.org/10.1098/rsfs.2021.0042
- Thomas Craig, K. J., Rizvi, R., Willis, V. C., Kassler, W. J., & Jackson, G. P. (2021). Effectiveness of Contact Tracing for Viral Disease Mitigation and Suppression: Evidence-Based Review. JMIR public health and surveillance, 7(10), e32468. https://doi.org/10.2196/32468
- Tobian, A. A. R., Cohn, C. S., & Shaz, B. H. (2022). COVID-19 convalescent plasma. Blood, 140(3), 196–207. https://doi.org/10.1182/blood.2021012248
- Tyagi, K., Rai, P., Gautam, A., Kaur, H., Kapoor, S., Suttee, A., Jaiswal, P. K., Sharma, A., Singh, G., & Barnwal, R. P. (2023). Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders. European journal of medical research, 28(1), 307. https://doi.org/10.1186/s40001-023-01293-2
- V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature reviews. Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
- Vangeel, L., Chiu, W., De Jonghe, S., Maes, P., Slechten, B., Raymenants, J., André, E., Leyssen, P., Neyts, J., & Jochmans, D. (2022). Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral research, 198, 105252. https://doi.org/10.1016/j.antiviral.2022.105252
- Varghese, P. M., Tsolaki, A. G., Yasmin, H., Shastri, A., Ferluga, J., Vatish, M., Madan, T., & Kishore, U. (2020). Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology, 225(6), 152008. https://doi.org/10.1016/j.imbio.2020.152008
- Velavan, T. P., Pallerla, S. R., Rüter, J., Augustin, Y., Kremsner, P. G., Krishna, S., & Meyer, G. (2021). Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine, 72, 103629. https://doi.org/10.1016/j.ebiom.2021.103629
- Velikova, T., Valkov, H., Aleksandrova, A., Peshevska-Sekulovska, M., Sekulovski, M., & Shumnalieva, R. (2024). Harnessing immunity: Immunomodulatory therapies in COVID-19. World journal of virology, 13(2), 92521. https://doi.org/10.5501/wjv.v13.i2.92521
- Villanueva, R. A., Rouillé, Y., & Dubuisson, J. (2005). Interactions between virus proteins and host cell membranes during the viral life cycle. International review of cytology, 245, 171– https://doi.org/10.1016/S0074-7696(05)45006-8
- Vinayagam, S., & Sattu, K. (2020). SARS-CoV-2 and coagulation disorders in different organs. Life sciences, 260, 118431. https://doi.org/10.1016/j.lfs.2020.118431
- Vivekanandhan, K., Shanmugam, P., Barabadi, H., Arumugam, V., Daniel Raj Daniel Paul Raj, D., Sivasubramanian, M., Ramasamy, S., Anand, K., Boomi, P., Chandrasekaran, B., Arokiyaraj, S., & Saravanan, M. (2021). Emerging Therapeutic Approaches to Combat COVID-19: Present Status and Future Pers Frontiers in molecular biosciences, 8, 604447. https://doi.org/10.3389/fmolb.2021.604447
- Walker, F. C., Sridhar, P. R., & Baldridge, M. T. (2021). Differential roles of interferons in innate responses to mucosal viral infections. Trends in immunology, 42(11), 1009–1023. https://doi.org/10.1016/j.it.2021.09.003
- Wang, C., Zhou, X., Wang, M., & Chen, X. (2020). The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infectious microbes & diseases, 3(1), 14–21. https://doi.org/10.1097/IM9.0000000000000045
- Wang, L., Nicols, A., Turtle, L., Richter, A., Duncan, C. J., Dunachie, S. J., Klenerman, P., & Payne, R. P. (2023). T cell immune memory after covid-19 and vaccination. BMJ medicine, 2(1), e000468. https://doi.org/10.1136/bmjmed-2022-000468
- Washington-Brown, L., & Wimbish-Tompkins, R. (2021). Vaccines, Herd Immunity, and COVID-19. The ABNF journal: official journal of the Association of Black Nursing Faculty in Higher Education, Inc, 32(2), 42–46.
- Wu, S. N., Xiao, T., Chen, H., & Li, X. H. (2024). Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition. RNA biology, 21(1), 1–18. https://doi.org/10.1080/15476286.2024.2433830
- Yang, Y., Xiao, Z., Ye, K., He, X., Sun, B., Qin, Z., Yu, J., Yao, J., Wu, Q., Bao, Z., & Zhao, W. (2020). SARS-CoV-2: characteristics and current advances in research. Virology journal, 17(1), 117. https://doi.org/10.1186/s12985-020-01369-z
- Yi, M., Li, T., Niu, M. et al. Targeting cytokine and chemokine signaling pathways for cancer therapy. Sig Transduct Target Ther 9, 176 (2024). https://doi.org/10.1038/s41392-02401868-3
- Yimga, J. (2024). Public health infrastructure and COVID-19 spread: An air transportation network analysis. Journal of the Air Transport Research Society, 3, 100040. https://doi.org/10.1016/j.jatrs.2024.100040
- Yokota, S., Okabayashi, T., & Fujii, N. (2010). The battle between virus and host: modulation of Toll-like receptor signaling pathways by virus infection. Mediators of inflammation, 2010, 184328. https://doi.org/10.1155/2010/184328
- Yu, S., Hu, H., Ai, Q., Bai, R., Ma, K., Zhou, M., & Wang, S. (2023). SARS-CoV-2 SpikeMediated Entry and Its Regulation by Host Innate Immunity. Viruses, 15(3), 639. https://doi.org/10.3390/v15030639
- Yugar-Toledo, J. C., Yugar, L. B. T., Sedenho-Prado, L. G., Schreiber, R., & Moreno, H. (2023). Pathophysiological effects of SARS-CoV-2 infection on the cardiovascular system and its clinical manifestations-a mini review. Frontiers in cardiovascular medicine, 10, 1162837. https://doi.org/10.3389/fcvm.2023.1162837
- Zabidi, N. Z., Liew, H. L., Farouk, I. A., Puniyamurti, A., Yip, A. J. W., Wijesinghe, V. N., Low, Z. Y., Tang, J. W., Chow, V. T. K., & Lal, S. K. (2023). Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Viruses, 15(4), 944. https://doi.org/10.3390/v15040944
- Zabidi, N. Z., Liew, H. L., Farouk, I. A., Puniyamurti, A., Yip, A. J. W., Wijesinghe, V. N., Low, Z. Y., Tang, J. W., Chow, V. T. K., & Lal, S. K. (2023). Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Viruses, 15(4), 944. https://doi.org/10.3390/v15040944
- Zaidi, A. K., Bajpai, S., & Dehgani-Mobaraki, P. (2024). B cell responses to SARS-CoV-2. In A. K. Zaidi (Ed.), Progress in Molecular Biology and Translational Science (Vol. 202, pp. 155–181). Academic Press. https://doi.org/10.1016/bs.pmbts.2023.11.006
- Zeng, H., Gao, X., Xu, G., Zhang, S., Cheng, L., Xiao, T., Zu, W., & Zhang, Z. (2022). SARSCoV-2 helicase NSP13 hijacks the host protein EWSR1 to promote viral replication by enhancing RNA unwinding activity. Infectious medicine, 1(1), 7–16. https://doi.org/10.1016/j.imj.2021.12.004
- Zhang, Q., Xiang, R., Huo, S., Zhou, Y., Jiang, S., Wang, Q., & Yu, F. (2021). Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal transduction and targeted therapy, 6(1), https://doi.org/10.1038/s41392-02100653-w
- Zhang, Z., Nomura, N., Muramoto, Y., Ekimoto, T., Uemura, T., Liu, K., Yui, M., Kono, N., Aoki, J., Ikeguchi, M., Noda, T., Iwata, S., Ohto, U., & Shimizu, T. (2022). Structure of SARSCoV-2 membrane protein essential for virus assembly. Nature communications, 13(1), 4399. https://doi.org/10.1038/s41467-022-32019-3
- Zhu, H., Wei, L. & Niu, P. The novel coronavirus outbreak in Wuhan, China. Glob health res policy 5, 6 (2020). https://doi.org/10.1186/s41256-020-00135-6
Download this article as
How to cite this article:
Bhanupratap Vishwakarma, Harshada Kulaye, Shruti Tiwari, Shizan Alam, Shivani Pandey and Sonali Joshi. 2025. SARS-CoV-2: A Comprehensive Review of Its Biology, Immunity, and Therapeutic Solutions.
Int.J.Curr.Microbiol.App.Sci. 14(11): 101-134. doi:
https://doi.org/10.20546/ijcmas.2025.1411.012
Citations