Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:11, November, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(11): 101-134
DOI: https://doi.org/10.20546/ijcmas.2025.1411.012


SARS-CoV-2: A Comprehensive Review of its Biology, Immunity, and Therapeutic Solutions
Bhanupratap Vishwakarma1*, Harshada Kulaye2, Shruti Tiwari1, Shizan Alam3, Shivani Pandey1 and Sonali Joshi1
1Department of Microbiology, ZSCT’s Thakur Shyamnarayan Degree College, Kandivali Mumbai- 4000101, India 2Department of Microbiology, Kishichand Chellaram College, Mumbai-400020, India 3Department of Microbiology, Guru Nanak Khalsa College of Arts, Science and Commerce, Dadar, Mumbai -400019, India
*Corresponding author
Abstract:

The global emergence of SARS-CoV-2 has led to an unprecedented health crisis, underscoring the critical importance of understanding its biology to inform control measures, immunity, and treatment approaches. This review explores the virus’s structural and genomic characteristics, including the spike protein and mechanisms of host cell entry, and compares SARS-CoV-2 with related coronaviruses, SARS-CoV and MERS-CoV. An analysis of transmission dynamics highlights factors such as viral load, routes of exposure, and host susceptibility, which together shape the virus’s spread. We further examine the pathogenesis of SARS-CoV-2, detailing its replication cycle, host-pathogen interactions, and impact on multiple organ systems. The immune response to SARS-CoV-2 is assessed through both innate and adaptive mechanisms, shedding light on immune evasion strategies and implications for long-term immunity. The role of immune memory and the potential for reinfection are discussed in the context of emerging viral variants, which pose challenges to vaccine efficacy and herd immunity efforts. This review also covers therapeutic strategies, including antiviral drugs, immunomodulators, and vaccines, alongside promising new treatments under investigation. Finally, we address challenges in SARS-CoV-2 research and propose directions for future studies, emphasizing the lessons learned from this pandemic to enhance preparedness for future outbreaks. Through a comprehensive synthesis of current knowledge, this review aims to contribute to the ongoing efforts to mitigate SARS-CoV-2’s impact on global health.


Keywords: SARS-CoV-2, COVID-19, Viral structure, Spike protein, ACE2 receptor, Immune evasion, Antiviral therapies, Monoclonal antibodies, Vaccine efficacy, Variants of concern


References:
  1. Aguilera, B., Donya, R. S., Vélez, C.-M., Kapiriri, L., Abelson, J., Nouvet, E., Danis, M., Goold, S., Williams, I., & Noorulhuda, M. (2024). Stakeholder participation in the COVID-19 pandemic preparedness and response plans: A synthesis of findings from 70 countries. Health Policy, 142, 1050 https://doi.org/10.1016/j.healthpol.2024.105013  
  2. Ahmadi, S., Bazargan, M., Elahi, R., & Esmaeilzadeh, A. (2023). Immune evasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); molecular approaches. Molecular immunology, 156, 10–19. https://doi.org/10.1016/j.molimm.2022.11.020
  3. Alaa Alnefaie, Sarah Albogami, Current approaches used in treating COVID-19 from a molecular mechanisms and immune response perspective, Saudi Pharmaceutical Journal, Volume28, Issue11, 2020, Pages 1333-1352, ISSN 1319-0164, https://doi.org/10.1016/j.jsps.2020.08.024 .
  4. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th New York: Garland Science; 2002. Helper T Cells and Lymphocyte Activation. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26827/
  5. Aledo-Serrano, A., Gil-Nagel, A., Isla, J., Mingorance, A., Mendez-Hermida, F., & Hernandez-Alcoceba, R. (2021). Gene therapies and COVID-19 vaccines: a necessary discussion in relation with viral vector-based approaches. Orphanet journal of rare diseases, 16(1), 3 https://doi.org/10.1186/s13023-021-01958-3
  6. Alhamlan, F. S., & Al-Qahtani, A. A. (2025). SARS-CoV-2 Variants: Genetic Insights, Epidemiological Tracking, and Implications for Vaccine Strategies. International journal of molecular sciences, 26(3), 1263. https://doi.org/10.3390/ijms26031263
  7. Alijotas-Reig, J., Esteve-Valverde, E., Belizna, C., Selva-O’Callaghan, A., Pardos-Gea, J., Quintana, A., Mekinian, A., Anunciacion-Llunell, A., & Miró-Mur, F. (2020). Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmunity reviews, 19(7), 102569. https://doi.org/10.1016/j.autrev.2020.102569
  8. Al-Momani, H., Aolymat, I., Almasri, M., Mahmoud, S. A., & Mashal, S. (2023). Prevalence of gastro-intestinal symptoms among COVID-19 patients and the association with disease clinical outcomes. Future science OA, 9(5), FSO858. https://doi.org/10.2144/fsoa-2023-0040
  9. Ashraf, U. M., Abokor, A. A., Edwards, J. M., Waigi, E. W., Royfman, R. S., Hasan, S. A., Smedlund, K. B., Hardy, A. M. G., Chakravarti, R., & Koch, L. G. (2021). SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological genomics, 53(2), 51–60. https://doi.org/10.1152/physiolgenomics.00087.2020
  10. Atef, S., Al Hosani, F., AbdelWareth, L., Al-Rifai, R. H., Abuyadek, R., Jabari, A., Ali, R., Altrabulsi, B., Dunachie, S., Alatoom, A., & Donnelly, J. G. (2023). Susceptibility to reinfection with SARS-CoV-2 virus relative to existing antibody concentrations and T cell response. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 131, 100–110. https://doi.org/10.1016/j.ijid.2023.01.006
  11. Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M. C., O’Mahony, L., Gao, Y., Nadeau, K., & Akdis, C. A. (2020). Immune response to SARS-CoV2 and mechanisms of immunopathological changes in COVID-19. Allergy, 75(7), 1564–1581. https://doi.org/10.1111/all.14364
  12. Azuma, K., Yanagi, U., Kagi, N., Kim, H., Ogata, M., & Hayashi, M. (2020). Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environmental health and preventive medicine, 25(1), 66. https://doi.org/10.1186/s12199-020-00904-2  
  13. Bai, Z., Cao, Y., Liu, W., & Li, J. (2021). The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine M Viruses, 13(6), 1115. https://doi.org/10.3390/v13061115
  14. Balcio?lu, B. K., Den?zc? ÖncÜ, M., ÖztÜrk, H. Ü., YÜcel, F., Kaya, F., Serhatli, M., Ülbe?? Polat, H., Tek?n, ?., & Özdem?r Bahadir, A. (2020). SARS-CoV-2 neutralizing antibody development strategies. Turkish journal of biology = Turk biyoloji dergisi, 44(3), 203–214. https://doi.org/10.3906/biy-2005-91
  15. Barros de Lima, G., Nencioni, E., Thimoteo, F., Perea, C., Pinto, R. F. A., & Sasaki, S. D. (2025). TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules, 15(1), 75. https://doi.org/10.3390/biom15010075
  16. Beyer, D. K., & Forero, A. (2022). Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. Journal of molecular biology, 434(6), 167265. https://doi.org/10.1016/j.jmb.2021.167265
  17. Borges do Nascimento, I. J., Pizarro, A. B., Almeida, J. M., Azzopardi-Muscat, N., Gonçalves, M. A., Björklund, M., & Novillo-Ortiz, D. (2022). Infodemics and health misinformation: a systematic review of reviews. Bulletin of the World Health Organization, 100(9), 544–561. https://doi.org/10.2471/BLT.21.287654
  18. Buchy, P., Buisson, Y., Cintra, O., Dwyer, D. E., Nissen, M., Ortiz de Lejarazu, R., & Petersen, E. (2021). COVID-19 pandemic: Lessons learned from more than a century of pandemics and current vaccine development for pandemic control. International Journal of Infectious Diseases, 112, 300–317. https://doi.org/10.1016/j.ijid.2021.09.045
  19. Bullen, M., Heriot, G. S., & Jamrozik, E. (2023). Herd immunity, vaccination and moral obligation. Journal of medical ethics, 49(9), 636–641. https://doi.org/10.1136/jme-2022108485
  20. Candido, K. L., Eich, C. R., de Fariña, L. O., Kadowaki, M. K., da Conceição Silva, J. L., Maller, A., & Simão, R. C. G. (2022). Spike protein of SARS-CoV-2 variants: a brief review and practical implications. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology], 53(3), 1133–1157. https://doi.org/10.1007/s42770-022-00743-z
  21. Cano RLE, Lopera HDE. Introduction to T and B lymphocytes. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et al., Autoimmunity: From Bench to Bedside [Internet]. Bogota (Colombia): El Rosario University Press; 2013 Jul 18. Chapter 5.
  22. Chatterjee, S., Bhattacharya, M., Dhama, K., Lee, S. S., & Chakraborty, C. (2023). Molnupiravir’s mechanism of action drives “error catastrophe” in SARS-CoV-2: A therapeutic strategy that leads to lethal mutagenesis of the virus. Molecular therapy. Nucleic acids, 33, 49– https://doi.org/10.1016/j.omtn.2023.06.006
  23. Chattopadhyay, S., Chen, J. Y., Chen, H. W., & Hu, C. J. (2017). Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics, 1(3), 244– 260. https://doi.org/10.7150/ntno.19796
  24. Chavda, V. P., Jogi, G., Dave, S., Patel, B. M., Vineela Nalla, L., & Koradia, K. (2023). mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown!. Vaccines, 11(3), https://doi.org/10.3390/vaccines11030507
  25. Chen, B., Julg, B., Mohandas, S., Bradfute, S. B., & RECOVER Mechanistic Pathways Task Force (2023). Viral persistence, reactivation, and mechanisms of long COVID. eLife, 12, e86015. https://doi.org/10.7554/eLife.86015
  26. Chen, P., Wu, M., He, Y., Jiang, B., & He, M. L. (2023). Metabolic alterations upon SARSCoV-2 infection and potential therapeutic targets against coronavirus infection. Signal transduction and targeted therapy, 8(1), 237. https://doi.org/10.1038/s41392-023-01510-8
  27. Chen, Q., Zhang, J., Wang, P., & Zhang, Z. (2022). The mechanisms of immune response and evasion by the main SARS-CoV-2 variants. iScience, 25(10), 105044. https://doi.org/10.1016/j.isci.2022.105044
  28. Cimolai N. (2021). Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clinical hematology international, 3(2), 47–68. https://doi.org/10.2991/chi.k.210328.001
  29. Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & growth factor reviews, 54, 62–75. https://doi.org/10.1016/j.cytogfr.2020.06.001
  30. Coutinho, A. E., & Chapman, K. E. (2011). The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and cellular endocrinology, 335(1), 2–1 https://doi.org/10.1016/j.mce.2010.04.005
  31. Dalskov, L., Gad, H. H., & Hartmann, R. (2023). Viral recognition and the antiviral interferon response. The EMBO journal, 42(14), e112907. https://doi.org/10.15252/embj.2022112907
  32. Datta, P. K., Liu, F., Fischer, T., Rappaport, J., & Qin, X. (2020). SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics, 10(16), 7448–7464. https://doi.org/10.7150/thno.48076
  33. Dhawan, M., Priyanka, Parmar, M., Angural, S., & Choudhary, O. P. (2022). Convalescent plasma therapy against the emerging SARS-CoV-2 variants: Delineation of the potentialities and risks. International journal of surgery (London, England), 97, 106204. https://doi.org/10.1016/j.ijsu.2021.106204    
  34. Du, P., Geng, J., Wang, F., Chen, X., Huang, Z., & Wang, Y. (2021). Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome. International journal of medical sciences, 18(6), 1356–1362. https://doi.org/10.7150/ijms.53564
  35. Elekhnawy, E., Kamar, A.A. & Sonbol, F. Present and future treatment strategies for coronavirus disease 2019. Futur J Pharm Sci 7, 84 (2021). https://doi.org/10.1186/s43094-02100238-y
  36. Farrukh, H., El-Sayes, N., & Mossman, K. (2021). Mechanisms of PD-L1 Regulation in Malignant and Virus-Infected Cell International journal of molecular sciences, 22(9), 4893. https://doi.org/10.3390/ijms22094893
  37. Galati, D., Zanotta, S., Capitelli, L., & Bocchino, M. (2022). A bird’s eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy, 77(1), 100–110. https://doi.org/10.1111/all.15004
  38. Ghattas, M., Dwivedi, G., Lavertu, M., & Alameh, M. G. (2021). Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines, 9(12), 1490. https://doi.org/10.3390/vaccines9121490
  39. Ghildiyal, T., Rai, N., Mishra Rawat, J., Singh, M., Anand, J., Pant, G., Kumar, G., & Shidiki, A. (2024). Challenges in Emerging Vaccines and Future Promising Candidates against SARS-CoV-2 Variants. Journal of immunology research, 2024, 9125398. https://doi.org/10.1155/2024/9125398
  40. Gong, W., Parkkila, S., Wu, X., & Aspatwar, A. (2022). SARS-CoV-2 variants and COVID19 vaccines: Current challenges and future strategies. International Reviews of Immunology, 42(6), 393–414. https://doi.org/10.1080/08830185.2022.2079642
  41. Gonzalez-Garcia, P., Fiorillo Moreno, O., Zarate Peñata, E., Calderon-Villalba, A., Pacheco Lugo, L., Acosta Hoyos, A., Villarreal Camacho, J. L., Navarro Quiroz, R., Pacheco Londoño, L., Aroca Martinez, G., Moares, N., Gabucio, A., Fernandez-Ponce, C., Garcia-Cozar, F., & Navarro Quiroz, E. (2023). From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. International journal of molecular sciences, 24(9), 8290. https://doi.org/10.3390/ijms24098290
  42. Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. The Journal of biological chemistry, 295(20), 6785–6797. https://doi.org/10.1074/jbc.RA120.013679
  43. Gorkhali, R., Koirala, P., Rijal, S., Mainali, A., Baral, A., & Bhattarai, H. K. (2021). Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins. Bioinformatics and biology insights, 15, 11779322211025876. https://doi.org/10.1177/11779322211025876
  44. Goyal, R., Gautam, R. K., Chopra, H., Dubey, A. K., Singla, R. K., Rayan, R. A., & Kamal, M. A. (2022). Comparative highlights on MERS-CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI journal, 21, 1245–1272. https://doi.org/10.17179/excli2022-5355
  45. Guo, W., Fu, Y., Jia, R., Guo, Z., Su, C., Li, J., Zhao, X., Jin, Y., Li, P., Fan, J., Zhang, C., Qu, P., Cui, H., Gao, S., Cheng, H., Li, J., Li, X., Lu, B., Xu, X., & Wang, Z. (2022). Visualization of the infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward. Environment international, 162, 107153. https://doi.org/10.1016/j.envint.2022.107153
  46. Haiyue Huang, Hun Park, Yihan Liu, Jiaxing Huang, On-Mask Chemical Modulation of Respiratory Droplets, Matter, Volume 3, Issue 5, 2020, Pages 1791-1810, ISSN 2590-2385, https://doi.org/10.1016/j.matt.2020.10.012.
  47. Harrison, A. G., Lin, T., & Wang, P. (2020). Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in immunology, 41(12), 1100–1115. https://doi.org/10.1016/j.it.2020.10.004
  48. Hassan, S. S., Choudhury, P. P., Dayhoff, G. W., 2nd, Aljabali, A. A. A., Uhal, B. D., Lundstrom,, Rezaei, N., Pizzol, D., Adadi, P., Lal, A., Soares, A., Mohamed Abd El-Aziz, T., Brufsky, A. M., Azad, G. K., Sherchan, S. P., Baetas-da-Cruz, W., Takayama, K., Serrano-Aroca, Ã., Chauhan, G., Palu, G., … Uversky, V. N. (2022). The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Archives of biochemistry and biophysics, 717, 109124. https://doi.org/10.1016/j.abb.2022.109124
  49. Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID19. Nature reviews. Microbiology, 19(3), 141–154. https://doi.org/10.1038/s41579-02000459-7
  50. Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID19. Acta pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-04854
  51. Islam, M. A. (2023). A review of SARS-CoV-2 variants and vaccines: Viral properties, mutations, vaccine efficacy, and safety. Infectious Medicine, 2(4), 247–261. https://doi.org/10.1016/j.imj.2023.08.005
  52. Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th New York: Garland Science; 2001. Immunological memory. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27158/
  53. Kane, B. A., Bryant, K. J., McNeil, H. P., & Tedla, N. T. (2014). Termination of immune activation: an essential component of healthy host immune responses. Journal of innate immunity, 6(6), 727–738. https://doi.org/10.1159/000363449  
  54. Kany, S., Vollrath, J. T., & Relja, B. (2019). Cytokines in Inflammatory Disease. International journal of molecular sciences, 20(23), 6008. https://doi.org/10.3390/ijms20236008
  55. Katiyar, H., Arduini, A., Li, Y., & Liang, C. (2024). SARS-CoV-2 Assembly: Gaining Infectivity and Beyond. Viruses, 16(11), 1648. https://doi.org/10.3390/v16111648
  56. Kaushik, A., Fomicheva, J., Boonstra, N., Faber, E., Gupta, , & Kest, H. (2025). Pediatric Vaccine Hesitancy in the United States-The Growing Problem and Strategies for Management Including Motivational Interviewing. Vaccines, 13(2), 115. https://doi.org/10.3390/vaccines13020115
  57. Khaledi, M., Sameni, F., Yahyazade, S., Radandish, M., Owlia, P., Bagheri, N., Afkhami, H., Mahjoor, M., Esmaelpour, Z., Kohansal, M., & Aghaei, F. (2022). COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Frontiers in medicine, 9, 961 https://doi.org/10.3389/fmed.2022.961027
  58. Khoshnood, S., Ghanavati, R., Shirani, M., Ghahramanpour, H., Sholeh, M., Shariati, A., Sadeghifard, N., & Heidary, M. (2022). Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Frontiers in microbiology, 13, 984536. https://doi.org/10.3389/fmicb.2022.984536
  59. Kindler, E., Thiel, V., & Weber, F. (2016). Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Advances in virus research, 96, 219–243. https://doi.org/10.1016/bs.aivir.2016.08.006
  60. Kopa?ska, M., Barna?, E., B?ajda, J., Kuduk, B., ?agowska, A., & Bana?-Z?bczyk, A. (2022). Effects of SARS-CoV-2 Inflammation on Selected Organ Systems of the Human Body. International journal of molecular sciences, 23(8), 4178. https://doi.org/10.3390/ijms23084178
  61. Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  62. Le, K., Kannappan, S., Kim, T., Lee, J. H., Lee, H. R., & Kim, K. K. (2023). Structural understanding of SARS-CoV-2 virus entry to host cells. Frontiers in molecular biosciences, 10, 1288686. https://doi.org/10.3389/fmolb.2023.1288686
  63. Legrand, M., Bell, S., Forni, L., Joannidis, M., Koyner, J. L., Liu, K., & Cantaluppi, V. (2021). Pathophysiology of COVID-19-associated acute kidney injury. Nature reviews. Nephrology, 17(11), 751–764. https://doi.org/10.1038/s41581-021-00452-0
  64. Li F. (2016). Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual review of virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  65. Liu, Q., Chi, S., Dmytruk, K., Dmytruk, O., & Tan, S. (2022). Coronaviral Infection and Interferon Response: The Virus-Host Arms Race and COVID-19. Viruses, 14(7), 1349. https://doi.org/10.3390/v14071349
  66. Manfrini, N., Notarbartolo, S., Grifantini, R., & Pesce, E. (2024). SARS-CoV-2: A Glance at the Innate Immune Response Elicited by Infection and Vaccination. Antibodies (Basel, Switzerland), 13(1), 13. https://doi.org/10.3390/antib13010013
  67. Meng, J., Li, R., Zhang, Z., Wang, J., Huang, Q., Nie, D., Fan, K., Guo, W., Zhao, Z., & Han, (2022). A Review of Potential Therapeutic Strategies for COVID-19. Viruses, 14(11), 2346. https://doi.org/10.3390/v14112346
  68. Meyerowitz, A., & Richterman, A. (2022). SARS-CoV-2 Transmission and Prevention in the Era of the Delta Variant. Infectious disease clinics of North America, 36(2), 267–293. https://doi.org/10.1016/j.idc.2022.01.007
  69. Milne, G., Hames, T., Scotton, C., Gent, N., Johnsen, A., Anderson, R. M., & Ward, T. (2021). Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? The Lancet. Respiratory medicine, 9(12), 1450–1466. https://doi.org/10.1016/S22132600(21)00407-0
  70. Minkoff, J.M., tenOever, B. Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol 21, 178–194 (2023). https://doi.org/10.1038/s41579-022-00839-1
  71. Morais da Silva, M., Lira de Lucena, A. S., Paiva Júnior, S. S. L., Florêncio De Carvalho, V. M., Santana de Oliveira, P. S., da Rosa, M. M., Barreto de Melo Rego, M. J., Pitta, M. G. D. R., & Pereira, M. C. (2022). Cell death mechanisms involved in cell injury caused by SARSCoV-2. Reviews in medical virology, 32(3), e2292. https://doi.org/10.1002/rmv.2292
  72. Morales-Hernández, S., Ugidos-Damboriena, N., & López-Sagaseta, J. (2022). SelfAssembling Protein Nanoparticles in the Design of Vaccines: 2022 Update. Vaccines, 10(9), 1447. https://doi.org/10.3390/vaccines10091447
  73. Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et biophysica acta. Molecular basis of disease, 1866(10), 165878. https://doi.org/10.1016/j.bbadis.2020.165878
  74. Nunes, M. C., Thommes, E., Fröhlich, H., Flahault, A., Arino, J., Baguelin, M., Biggerstaff, M., Bizel-Bizellot, G., Borchering, R., Cacciapaglia, G., Cauchemez, S., Barbier-Chebbah, A., Claussen, C., Choirat, C., Cojocaru, M., Commaille-Chapus, C., Hon, C., Kong, J., Lambert, N., Lauer, K. B., Coudeville, L. (2024). Redefining pandemic preparedness: Multidisciplinary insights from the CERP modelling workshop in infectious diseases, workshop report. Infectious Disease Modelling, 9(2), 501–518. https://doi.org/10.1016/j.idm.2024.02.008
  75. Okuyama R. (2023). mRNA and Adenoviral Vector Vaccine Platforms Utilized in COVID19 Vaccines: Technologies, Ecosystem, and Future Directions. Vaccines, 11(12), 1737. https://doi.org/10.3390/vaccines11121737
  76. Onakpoya, I. J., Heneghan, C. J., Spencer, E. A., Brassey, J., Plüddemann, A., Evans, D. H., Conly, J. M., & Jefferson, T. (2021). SARS-CoV-2 and the role of fomite transmission: a systematic review. F1000Research, 10, 233. https://doi.org/10.12688/f1000research.51590.3
  77. Pilz, S., Theiler-Schwetz, V., Trummer, C., Krause, R., & Ioannidis, J. P. A. (2022). SARSCoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. Environmental research, 209, 112911. https://doi.org/10.1016/j.envres.2022.112911
  78. Primorac, D., Vrdoljak, K., Brlek, P., Paveli?, E., Molnar, V., Matiši?, V., Erceg Ivkoši?, I., & Par?ina, M. (2022). Adaptive Immune Responses and Immunity to SARS-CoV-2. Frontiers in immunology, 13, 848582. https://doi.org/10.3389/fimmu.2022.848582
  79. Rabaan, A. A., Smajlovi?, S., Tombuloglu, H., ?ordi?, S., Hajdarevi?, A., Kudi?, N., Al Mutai, A., Turkistani, S. , Al-Ahmed, S. H., Al-Zaki, N. A., Al Marshood, M. J., Alfaraj, A. H., Alhumaid, S., & Al-Suhaimi, E. (2023). SARS-CoV-2 infection and multi-organ system damage: A review. Biomolecules & biomedicine, 23(1), 37–52. https://doi.org/10.17305/bjbms.2022.7762
  80. Rahmah, L., Abarikwu, S. O., Arero, A. G., Essouma, M., Jibril, A. T., Fal, A., Flisiak, R., Makuku, R., Marquez, L., Mohamed, K., Ndow, L., Zar?bska-Michaluk, D., Rezaei, N., & Rzymski, P. (2022). Oral antiviral treatments for COVID-19: opportunities and challenges. Pharmacological reports: PR, 74(6), 1255–1278. https://doi.org/10.1007/s43440-022-003887
  81. Rampersad, S., & Tennant, P. (2018). Replication and Expression Strategies of Viruses. Viruses, 55–82. https://doi.org/10.1016/B978-0-12-811257-1.00003-6
  82. Rasool, G., Khan, W. A., Khan, A. M., Riaz, M., Abbas, M., Rehman, A. U., Irshad, S., & Ahmad, S. (2024). COVID-19: A threat to the respiratory system. International journal of immunopathology and pharmacology, 38, 3946320241310307. https://doi.org/10.1177/03946320241310307
  83. Rodrigues, C. M. C., & Plotkin, S. A. (2020). Impact of Vaccines; Health, Economic and Social Perspectives. Frontiers in microbiology, 11, 1526. https://doi.org/10.3389/fmicb.2020.01526
  84. Rubio-Casillas, A., Redwan, E. M., & Uversky, V. N. (2022). SARS-CoV-2: A Master of Immune Evasion. Biomedicines, 10(6), 1339. https://doi.org/10.3390/biomedicines10061339
  85. Sacchi, A., Giannessi, F., Sabatini, A., Percario, Z. A., & Affabris, E. (2023). SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness?. International journal of molecular sciences, 24(11), 9353. https://doi.org/10.3390/ijms24119353
  86. Sayahinouri, M., Mashayekhi Firouz, S., Ebrahimi Sadrabadi, A., Masoudnia, M., Abdolahi, M., Jafarzadeh, F., Nouripour, M., Mirzazadeh, S., Zangeneh, , Jalili, A., & Aghdami, N. (2023). Functionality of immune cells in COVID-19 infection: development of cell-based therapeutics. BioImpacts: BI, 13(2), 159–179. https://doi.org/10.34172/bi.2023.23839
  87. Schiuma, G., Beltrami, S., Bortolotti, D., Rizzo, S., & Rizzo, R. (2022). Innate Immune Response in SARS-CoV-2 Infection. Microorganisms, 10(3), 501. https://doi.org/10.3390/microorganisms10030501
  88. Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0
  89. Shenoy S. (2021). SARS-CoV-2 (COVID-19), viral load and clinical outcomes; lessons learned one year into the pandemic: A systematic review. World journal of critical care medicine, 10(4), 132–150. https://doi.org/10.5492/wjccm.v10.i4.132
  90. Silva, M. J. A., Ribeiro, R., Lima, K. V. B., & Lima, L. N. G. C. (2022). Adaptive immunity to SARS-CoV-2 infection: A systematic review. Frontiers in immunology, 13, 1001198. https://doi.org/10.3389/fimmu.2022.1001198
  91. Speiser, D. E., & Bachmann, M. F. (2020). COVID-19: Mechanisms of Vaccination and Immunity. Vaccines, 8(3), 404. https://doi.org/10.3390/vaccines8030404
  92. Sunagar, R., Singh, A., & Kumar, S. (2023). SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines, 11(4), 849. https://doi.org/10.3390/vaccines11040849
  93. Tang, S., Mao, Y., Jones, R. M., Tan, Q., Ji, J. S., Li, N., Shen, J., Lv, Y., Pan, L., Ding, P., Wang, X., Wang, Y., MacIntyre, C. R., & Shi, X. (2020). Aerosol transmission of SARS-CoV2? Evidence, prevention and control. Environment international, 144, 106039. https://doi.org/10.1016/j.envint.2020.106039
  94. Taylor, P. C., Adams, A. C., Hufford, M. M., de la Torre, I., Winthrop, K., & Gottlieb, R. L. (2021). Neutralizing monoclonal antibodies for treatment of COVID-19. Nature reviews. Immunology, 21(6), 382–393. https://doi.org/10.1038/s41577-021-00542-x
  95. Te Velthuis, A. J., Arnold, J. J., Cameron, C. E., van den Worm, S. H., & Snijder, E. J. (2010). The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic acids research, 38(1), 203–214. https://doi.org/10.1093/nar/gkp904
  96. Thakur, S., Sasi, S., Pillai, S. G., Nag, A., Shukla, D., Singhal, R., Phalke, S., & Velu, G. S. K. (2022). SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Frontiers in medicine, 9, 815389. https://doi.org/10.3389/fmed.2022.815389
  97. Tharayil, A., Rajakumari, R., Mozetic, M., Primc, G., & Thomas, S. (2021). Contact transmission of SARS-CoV-2 on fomite surfaces: surface survival and risk reduction. Interface focus, 12(1), 20210042. https://doi.org/10.1098/rsfs.2021.0042
  98. Thomas Craig, K. J., Rizvi, R., Willis, V. C., Kassler, W. J., & Jackson, G. P. (2021). Effectiveness of Contact Tracing for Viral Disease Mitigation and Suppression: Evidence-Based Review. JMIR public health and surveillance, 7(10), e32468. https://doi.org/10.2196/32468
  99. Tobian, A. A. R., Cohn, C. S., & Shaz, B. H. (2022). COVID-19 convalescent plasma. Blood, 140(3), 196–207. https://doi.org/10.1182/blood.2021012248
  100. Tyagi, K., Rai, P., Gautam, A., Kaur, H., Kapoor, S., Suttee, A., Jaiswal, P. K., Sharma, A., Singh, G., & Barnwal, R. P. (2023). Neurological manifestations of SARS-CoV-2: complexity, mechanism and associated disorders. European journal of medical research, 28(1), 307. https://doi.org/10.1186/s40001-023-01293-2
  101. V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature reviews. Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  102. Vangeel, L., Chiu, W., De Jonghe, S., Maes, P., Slechten, B., Raymenants, J., André, E., Leyssen, P., Neyts, J., & Jochmans, D. (2022). Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral research, 198, 105252. https://doi.org/10.1016/j.antiviral.2022.105252  
  103. Varghese, P. M., Tsolaki, A. G., Yasmin, H., Shastri, A., Ferluga, J., Vatish, M., Madan, T., & Kishore, U. (2020). Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology, 225(6), 152008. https://doi.org/10.1016/j.imbio.2020.152008
  104. Velavan, T. P., Pallerla, S. R., Rüter, J., Augustin, Y., Kremsner, P. G., Krishna, S., & Meyer, G. (2021). Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine, 72, 103629. https://doi.org/10.1016/j.ebiom.2021.103629
  105. Velikova, T., Valkov, H., Aleksandrova, A., Peshevska-Sekulovska, M., Sekulovski, M., & Shumnalieva, R. (2024). Harnessing immunity: Immunomodulatory therapies in COVID-19. World journal of virology, 13(2), 92521. https://doi.org/10.5501/wjv.v13.i2.92521
  106. Villanueva, R. A., Rouillé, Y., & Dubuisson, J. (2005). Interactions between virus proteins and host cell membranes during the viral life cycle. International review of cytology, 245, 171– https://doi.org/10.1016/S0074-7696(05)45006-8
  107. Vinayagam, S., & Sattu, K. (2020). SARS-CoV-2 and coagulation disorders in different organs. Life sciences, 260, 118431. https://doi.org/10.1016/j.lfs.2020.118431
  108. Vivekanandhan, K., Shanmugam, P., Barabadi, H., Arumugam, V., Daniel Raj Daniel Paul Raj, D., Sivasubramanian, M., Ramasamy, S., Anand, K., Boomi, P., Chandrasekaran, B., Arokiyaraj, S., & Saravanan, M. (2021). Emerging Therapeutic Approaches to Combat COVID-19: Present Status and Future Pers Frontiers in molecular biosciences, 8, 604447. https://doi.org/10.3389/fmolb.2021.604447
  109. Walker, F. C., Sridhar, P. R., & Baldridge, M. T. (2021). Differential roles of interferons in innate responses to mucosal viral infections. Trends in immunology, 42(11), 1009–1023. https://doi.org/10.1016/j.it.2021.09.003
  110. Wang, C., Zhou, X., Wang, M., & Chen, X. (2020). The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infectious microbes & diseases, 3(1), 14–21. https://doi.org/10.1097/IM9.0000000000000045  
  111. Wang, L., Nicols, A., Turtle, L., Richter, A., Duncan, C. J., Dunachie, S. J., Klenerman, P., & Payne, R. P. (2023). T cell immune memory after covid-19 and vaccination. BMJ medicine, 2(1), e000468. https://doi.org/10.1136/bmjmed-2022-000468
  112. Washington-Brown, L., & Wimbish-Tompkins, R. (2021). Vaccines, Herd Immunity, and COVID-19. The ABNF journal: official journal of the Association of Black Nursing Faculty in Higher Education, Inc, 32(2), 42–46.
  113. Wu, S. N., Xiao, T., Chen, H., & Li, X. H. (2024). Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition. RNA biology, 21(1), 1–18. https://doi.org/10.1080/15476286.2024.2433830
  114. Yang, Y., Xiao, Z., Ye, K., He, X., Sun, B., Qin, Z., Yu, J., Yao, J., Wu, Q., Bao, Z., & Zhao, W. (2020). SARS-CoV-2: characteristics and current advances in research. Virology journal, 17(1), 117. https://doi.org/10.1186/s12985-020-01369-z
  115. Yi, M., Li, T., Niu, M. et al. Targeting cytokine and chemokine signaling pathways for cancer therapy. Sig Transduct Target Ther 9, 176 (2024). https://doi.org/10.1038/s41392-02401868-3
  116. Yimga, J. (2024). Public health infrastructure and COVID-19 spread: An air transportation network analysis. Journal of the Air Transport Research Society, 3, 100040. https://doi.org/10.1016/j.jatrs.2024.100040
  117. Yokota, S., Okabayashi, T., & Fujii, N. (2010). The battle between virus and host: modulation of Toll-like receptor signaling pathways by virus infection. Mediators of inflammation, 2010, 184328. https://doi.org/10.1155/2010/184328
  118. Yu, S., Hu, H., Ai, Q., Bai, R., Ma, K., Zhou, M., & Wang, S. (2023). SARS-CoV-2 SpikeMediated Entry and Its Regulation by Host Innate Immunity. Viruses, 15(3), 639. https://doi.org/10.3390/v15030639
  119. Yugar-Toledo, J. C., Yugar, L. B. T., Sedenho-Prado, L. G., Schreiber, R., & Moreno, H. (2023). Pathophysiological effects of SARS-CoV-2 infection on the cardiovascular system and its clinical manifestations-a mini review. Frontiers in cardiovascular medicine, 10, 1162837. https://doi.org/10.3389/fcvm.2023.1162837
  120. Zabidi, N. Z., Liew, H. L., Farouk, I. A., Puniyamurti, A., Yip, A. J. W., Wijesinghe, V. N., Low, Z. Y., Tang, J. W., Chow, V. T. K., & Lal, S. K. (2023). Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Viruses, 15(4), 944. https://doi.org/10.3390/v15040944
  121. Zabidi, N. Z., Liew, H. L., Farouk, I. A., Puniyamurti, A., Yip, A. J. W., Wijesinghe, V. N., Low, Z. Y., Tang, J. W., Chow, V. T. K., & Lal, S. K. (2023). Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Viruses, 15(4), 944. https://doi.org/10.3390/v15040944
  122. Zaidi, A. K., Bajpai, S., & Dehgani-Mobaraki, P. (2024). B cell responses to SARS-CoV-2. In A. K. Zaidi (Ed.), Progress in Molecular Biology and Translational Science (Vol. 202, pp. 155–181). Academic Press. https://doi.org/10.1016/bs.pmbts.2023.11.006  
  123. Zeng, H., Gao, X., Xu, G., Zhang, S., Cheng, L., Xiao, T., Zu, W., & Zhang, Z. (2022). SARSCoV-2 helicase NSP13 hijacks the host protein EWSR1 to promote viral replication by enhancing RNA unwinding activity. Infectious medicine, 1(1), 7–16. https://doi.org/10.1016/j.imj.2021.12.004
  124. Zhang, Q., Xiang, R., Huo, S., Zhou, Y., Jiang, S., Wang, Q., & Yu, F. (2021). Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal transduction and targeted therapy, 6(1), https://doi.org/10.1038/s41392-02100653-w
  125. Zhang, Z., Nomura, N., Muramoto, Y., Ekimoto, T., Uemura, T., Liu, K., Yui, M., Kono, N., Aoki, J., Ikeguchi, M., Noda, T., Iwata, S., Ohto, U., & Shimizu, T. (2022). Structure of SARSCoV-2 membrane protein essential for virus assembly. Nature communications, 13(1), 4399. https://doi.org/10.1038/s41467-022-32019-3
  126. Zhu, H., Wei, L. & Niu, P. The novel coronavirus outbreak in Wuhan, China. Glob health res policy 5, 6 (2020). https://doi.org/10.1186/s41256-020-00135-6

Download this article as Download

How to cite this article:

Bhanupratap Vishwakarma, Harshada Kulaye, Shruti Tiwari, Shizan Alam, Shivani Pandey and Sonali Joshi. 2025. SARS-CoV-2: A Comprehensive Review of Its Biology, Immunity, and Therapeutic Solutions.Int.J.Curr.Microbiol.App.Sci. 14(11): 101-134. doi: https://doi.org/10.20546/ijcmas.2025.1411.012
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations