Evaluation of FineX 3060 Supplementation on Immune Modulation, Tissue Distribution, and Pharmacokinetics
Fine Organic Industries Limited, Mahatma Gandhi Road, Rajawadi Colony,Ghatkopar East, Mumbai, Maharashtra 400077, India
*Corresponding author
Abstract:
The poultry industry faces increasing pressure to reduce antibiotic use while maintaining optimal growth performance and disease resistance. Medium-chain fatty acids, particularly lauric acid, have emerged as promising alternatives to conventional growth promoters. This study investigated the dose-dependent effects of dietary lauric acid supplementation on immune cell populations and tissue distribution in broiler chickens. A total of five experimental groups were established, including a control group receiving a standard diet and four treatment groups supplemented with lauric acid at 375, 500, 750, and 1000 g/MT feed. Flow cytometric analysis revealed significant dose-dependent increases in B lymphocyte populations (Bu1+ cells), with the 750 g/MT group showing maximum enhancement (28.82 ± 1.03%) compared to control (20.73 ± 0.52%). Pharmacokinetic analysis demonstrated sustained plasma lauric acid concentrations over 48 hours, with dose-proportional increases across treatment groups. Tissue distribution studies showed preferential accumulation in respiratory tissues, with lung and trachea concentrations reaching 8.98 ± 0.21 ?g/ml and 6.45 ± 0.25 ?g/ml respectively in the highest dose group. These findings suggest that dietary lauric acid supplementation at 750 g/MT provides optimal immunomodulatory effects in broiler chickens, supporting its potential as a natural feed additive for enhancing immune function and respiratory health.
Keywords: Lauric acid, broiler chickens, immune modulation, B lymphocytes, pharmacokinetics, tissue distribution
References:
- 1. Huyghebaert, G., Ducatelle, R., & Van Immerseel, F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal, 187(2), 182-188.
- 2. Zentek, J., Buchheit-Renko, S., Männer, K., Pieper, R., & Vahjen, W. (2012). Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets. Archives of animal nutrition, 66(1), 14-26.
- 3. Nguyen, D. H., Lee, K. Y., Mohammadigheisar, M., & Kim, I. H. (2018). Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poultry science, 97(12), 4351-4358.
- 4. Kabara, J. J. (1977). U.S. Patent No. 4,002,775. Washington, DC: U.S. Patent and Trademark Office.
- 5. Thormar, H., Isaacs, C. E., Brown, H. R., Barshatzky, M. R., & Pessolano, T. (1987). Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrobial agents and chemotherapy, 31(1), 27-31.
- 6. Wu, Y., Zhang, H., Zhang, R., Cao, G., Li, Q., Zhang, B., ... & Yang, C. (2021). Serum metabolome and gut microbiome alterations in broiler chickens supplemented with lauric acid. Poultry Science, 100(9), 101315.
- 7. Huang, C. B., Alimova, Y., Myers, T. M., & Ebersole, J. L. (2011). Short-and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Archives of oral biology, 56(7), 650-654.
- 8. Davison, T. F., Kaspers, B., & Schat, K. A. (2008). Avian immunology. (No Title).
- 9. Radzikowska, U., Rinaldi, A. O., Çelebi Sözener, Z., Karaguzel, D., Wojcik, M., Cypryk, K., ... & Sokolowska, M. (2019). The influence of dietary fatty acids on immune responses. Nutrients, 11(12), 2990.
- 10. Göbel, T. W., Chen, C. L., Lahti, J., Kubota, T., Kuo, C. L., Aebersold, R., ... & Cooper, M. D. (1994). Identification of T-cell receptor alpha-chain genes in the chicken. Proceedings of the National Academy of Sciences, 91(3), 1094-1098.
- 11. Qorbanpour, M., Fahim, T., Javandel, F., Nosrati, M., Paz, E., Seidavi, A., ... & Tufarelli, V. (2018). Effect of dietary ginger (Zingiber officinale Roscoe) and multi-strain probiotic on growth and carcass traits, blood biochemistry, immune responses and intestinal microflora in broiler chickens. Animals, 8(7), 117.
- 12. Song, B., Li, H., Wu, Y., Zhen, W., Wang, Z., Xia, Z., & Guo, Y. (2017). Effect of microencapsulated sodium butyrate dietary supplementation on growth performance and intestinal barrier function of broiler chickens infected with necrotic enteritis. Animal Feed Science and Technology, 232, 6-15.
- 13. Wong, S. W., Kwon, M. J., Choi, A. M., Kim, H. P., Nakahira, K., & Hwang, D. H. (2009). Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. Journal of Biological Chemistry, 284(40), 27384-27392.
- 14. Zheng, C., Xiao, G., Yan, X., Qiu, T., Liu, S., Ou, J., ... & Zhang, H. (2023). Complex of lauric acid monoglyceride and cinnamaldehyde ameliorated subclinical necrotic enteritis in yellow-feathered broilers by regulating gut morphology, barrier, inflammation and serum biochemistry. Animals, 13(3), 516.
- 15. Wu, Y., Li, Q., Liu, J., Liu, Y., Xu, Y., Zhang, R., ... & Yang, C. (2021). Integrating serum metabolome and gut microbiome to evaluate the benefits of lauric acid on lipopolysaccharide-challenged broilers. Frontiers in immunology, 12, 759323.
- 16. Peebles, E. D. (2018). In ovo applications in poultry: a review. Poultry science, 97(7), 2322-2338.
- 17. Sayegh, C. E., Demaries, S. L., Iacampo, S., & Ratcliffe, M. J. (1999). Development of B cells expressing surface immunoglobulin molecules that lack V (D) J-encoded determinants in the avian embryo bursa of Fabricius. Proceedings of the National Academy of Sciences, 96(19), 10806-10811.
- 18. Chan, M. M., Chen, C. L., Ager, L. L., & Cooper, M. D. (1988). Identification of the avian homologues of mammalian CD4 and CD8 antigens. The journal of immunology, 140(7), 2133-2138.
- 19. Ratcliffe, M. J. (2006). Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Developmental & Comparative Immunology, 30(1-2), 101-118.
- 20. Klasing, K. C. (2007). Nutrition and the immune system. British poultry science, 48(5), 525-537.
- 21. Rodrigues, H. G., Vinolo, M. A. R., Magdalon, J., Fujiwara, H., Cavalcanti, D. M., Farsky, S. H., ... & Curi, R. (2010). Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. Lipids, 45(9), 809-819.
- 22. Song, B., Tang, D., Yan, S., Fan, H., Li, G., Shahid, M. S., ... & Guo, Y. (2021). Effects of age on immune function in broiler chickens. Journal of Animal Science and Biotechnology, 12(1), 42.
- 23. Pike, L. J. (2006). Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. Journal of lipid research, 47(7), 1597-1598.
- 24. Clarke, S. D., Gasperikova, D., Nelson, C., Lapillonne, A., & Heird, W. C. (2002). Fatty acid regulation of gene expression: a genomic explanation for the benefits of the mediterranean diet. Annals of the New York Academy of Sciences, 967(1), 283-298.
- 25. Bach, A. C., & Babayan, V. K. (1982). Medium-chain triglycerides: an update. The American journal of clinical nutrition, 36(5), 950-962.
- 26. Dayrit, F. M. (2015). The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists' Society, 92(1), 1-15.
- 27. Schönfeld, P., & Wojtczak, L. (2016). Short-and medium-chain fatty acids in energy metabolism: the cellular perspective. Journal of lipid research, 57(6), 943-954.
- 28. Dayrit, F. M. (2014). Lauric acid is a medium-chain fatty acid, coconut oil is a medium-chain triglyceride. Philippine Journal of Science, 143(2), 157-166.
- 29. Jin, X., Zhou, J., Richey, G., Wang, M., Hong, S. M. C., & Hong, S. H. (2020). Undecanoic acid, lauric acid, and N-tridecanoic acid inhibit Escherichia coli persistence and biofilm formation. Journal of microbiology and biotechnology, 31(1), 130.
- 30. Batovska, D. I., Todorova, T., Tsvetkova, V., & Najdenski, H. M. (2009). Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships. Polish Journal of Microbiology, 58(1), 43-47.
- 31. Naudí, A., Jové, M., Ayala, V., Portero-Otín, M., Barja, G., & Pamplona, R. (2013). Membrane lipid unsaturation as physiological adaptation to animal longevity. Frontiers in physiology, 4, 372.
- 32. Beckford, R. C., Ellestad, L. E., Proszkowiec-Weglarz, M., Farley, L., Brady, K., Angel, R., ... & Porter, T. E. (2020). Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poultry Science, 99(12), 6317-6325.
- 33. Li, Q., Peng, X., Burrough, E. R., Sahin, O., Gould, S. A., Gabler, N. K., ... & Patience, J. F. (2020). Dietary soluble and insoluble fiber with or without enzymes altered the intestinal microbiota in weaned pigs challenged with enterotoxigenic E. coli F18. Frontiers in microbiology, 11, 1110.
- 34. Mehdi, Y., Létourneau-Montminy, M. P., Gaucher, M. L., Chorfi, Y., Suresh, G., Rouissi, T., ... & Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal nutrition, 4(2), 170-178.
- 35. Liu, H., Pan, S., Wang, C., Yang, W., Wei, X., He, Y., ... & Si, H. (2025). Review of respiratory syndromes in poultry: pathogens, prevention, and control measures. Veterinary Research, 56(1), 101.
- 36. Cheng, J., Lei, H., Xie, C., Chen, J., Yi, X., Zhao, F., & Ji, J. (2023). B lymphocyte development in the bursa of fabricius of young broilers is influenced by the gut microbiota. Microbiology Spectrum, 11(2), e04799-22.
Download this article as
How to cite this article:
Shriniwas Sawant, Parth Sutar and Akshay Wankhade. 2025. Evaluation of FineX 3060 Supplementation on Immune Modulation, Tissue Distribution, and Pharmacokinetics.
Int.J.Curr.Microbiol.App.Sci. 14(10): 261-270. doi:
https://doi.org/10.20546/ijcmas.2025.1410.027
Citations