Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:10, October, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(10): 261-270
DOI: https://doi.org/10.20546/ijcmas.2025.1410.027


Evaluation of FineX 3060 Supplementation on Immune Modulation, Tissue Distribution, and Pharmacokinetics
Shriniwas Sawant*, Parth Sutar and Akshay Wankhade
Fine Organic Industries Limited, Mahatma Gandhi Road, Rajawadi Colony,Ghatkopar East, Mumbai, Maharashtra 400077, India
*Corresponding author
Abstract:

The poultry industry faces increasing pressure to reduce antibiotic use while maintaining optimal growth performance and disease resistance. Medium-chain fatty acids, particularly lauric acid, have emerged as promising alternatives to conventional growth promoters. This study investigated the dose-dependent effects of dietary lauric acid supplementation on immune cell populations and tissue distribution in broiler chickens. A total of five experimental groups were established, including a control group receiving a standard diet and four treatment groups supplemented with lauric acid at 375, 500, 750, and 1000 g/MT feed. Flow cytometric analysis revealed significant dose-dependent increases in B lymphocyte populations (Bu1+ cells), with the 750 g/MT group showing maximum enhancement (28.82 ± 1.03%) compared to control (20.73 ± 0.52%). Pharmacokinetic analysis demonstrated sustained plasma lauric acid concentrations over 48 hours, with dose-proportional increases across treatment groups. Tissue distribution studies showed preferential accumulation in respiratory tissues, with lung and trachea concentrations reaching 8.98 ± 0.21 ?g/ml and 6.45 ± 0.25 ?g/ml respectively in the highest dose group. These findings suggest that dietary lauric acid supplementation at 750 g/MT provides optimal immunomodulatory effects in broiler chickens, supporting its potential as a natural feed additive for enhancing immune function and respiratory health.


Keywords: Lauric acid, broiler chickens, immune modulation, B lymphocytes, pharmacokinetics, tissue distribution


References:
  1. 1. Huyghebaert, G., Ducatelle, R., & Van Immerseel, F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal, 187(2), 182-188.
  2. 2. Zentek, J., Buchheit-Renko, S., Männer, K., Pieper, R., & Vahjen, W. (2012). Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets. Archives of animal nutrition, 66(1), 14-26.
  3. 3. Nguyen, D. H., Lee, K. Y., Mohammadigheisar, M., & Kim, I. H. (2018). Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poultry science, 97(12), 4351-4358.
  4. 4. Kabara, J. J. (1977). U.S. Patent No. 4,002,775. Washington, DC: U.S. Patent and Trademark Office.
  5. 5. Thormar, H., Isaacs, C. E., Brown, H. R., Barshatzky, M. R., & Pessolano, T. (1987). Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrobial agents and chemotherapy, 31(1), 27-31.
  6. 6. Wu, Y., Zhang, H., Zhang, R., Cao, G., Li, Q., Zhang, B., ... & Yang, C. (2021). Serum metabolome and gut microbiome alterations in broiler chickens supplemented with lauric acid. Poultry Science, 100(9), 101315.
  7. 7. Huang, C. B., Alimova, Y., Myers, T. M., & Ebersole, J. L. (2011). Short-and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Archives of oral biology, 56(7), 650-654.
  8. 8. Davison, T. F., Kaspers, B., & Schat, K. A. (2008). Avian immunology. (No Title).
  9. 9. Radzikowska, U., Rinaldi, A. O., Çelebi Sözener, Z., Karaguzel, D., Wojcik, M., Cypryk, K., ... & Sokolowska, M. (2019). The influence of dietary fatty acids on immune responses. Nutrients, 11(12), 2990.
  10. 10. Göbel, T. W., Chen, C. L., Lahti, J., Kubota, T., Kuo, C. L., Aebersold, R., ... & Cooper, M. D. (1994). Identification of T-cell receptor alpha-chain genes in the chicken. Proceedings of the National Academy of Sciences, 91(3), 1094-1098.
  11. 11. Qorbanpour, M., Fahim, T., Javandel, F., Nosrati, M., Paz, E., Seidavi, A., ... & Tufarelli, V. (2018). Effect of dietary ginger (Zingiber officinale Roscoe) and multi-strain probiotic on growth and carcass traits, blood biochemistry, immune responses and intestinal microflora in broiler chickens. Animals, 8(7), 117.
  12. 12. Song, B., Li, H., Wu, Y., Zhen, W., Wang, Z., Xia, Z., & Guo, Y. (2017). Effect of microencapsulated sodium butyrate dietary supplementation on growth performance and intestinal barrier function of broiler chickens infected with necrotic enteritis. Animal Feed Science and Technology, 232, 6-15.
  13. 13. Wong, S. W., Kwon, M. J., Choi, A. M., Kim, H. P., Nakahira, K., & Hwang, D. H. (2009). Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. Journal of Biological Chemistry, 284(40), 27384-27392.
  14. 14. Zheng, C., Xiao, G., Yan, X., Qiu, T., Liu, S., Ou, J., ... & Zhang, H. (2023). Complex of lauric acid monoglyceride and cinnamaldehyde ameliorated subclinical necrotic enteritis in yellow-feathered broilers by regulating gut morphology, barrier, inflammation and serum biochemistry. Animals, 13(3), 516.
  15. 15. Wu, Y., Li, Q., Liu, J., Liu, Y., Xu, Y., Zhang, R., ... & Yang, C. (2021). Integrating serum metabolome and gut microbiome to evaluate the benefits of lauric acid on lipopolysaccharide-challenged broilers. Frontiers in immunology, 12, 759323.
  16. 16. Peebles, E. D. (2018). In ovo applications in poultry: a review. Poultry science, 97(7), 2322-2338.
  17. 17. Sayegh, C. E., Demaries, S. L., Iacampo, S., & Ratcliffe, M. J. (1999). Development of B cells expressing surface immunoglobulin molecules that lack V (D) J-encoded determinants in the avian embryo bursa of Fabricius. Proceedings of the National Academy of Sciences, 96(19), 10806-10811.
  18. 18. Chan, M. M., Chen, C. L., Ager, L. L., & Cooper, M. D. (1988). Identification of the avian homologues of mammalian CD4 and CD8 antigens. The journal of immunology, 140(7), 2133-2138.
  19. 19. Ratcliffe, M. J. (2006). Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Developmental & Comparative Immunology, 30(1-2), 101-118.
  20. 20. Klasing, K. C. (2007). Nutrition and the immune system. British poultry science, 48(5), 525-537.
  21. 21. Rodrigues, H. G., Vinolo, M. A. R., Magdalon, J., Fujiwara, H., Cavalcanti, D. M., Farsky, S. H., ... & Curi, R. (2010). Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. Lipids, 45(9), 809-819.
  22. 22. Song, B., Tang, D., Yan, S., Fan, H., Li, G., Shahid, M. S., ... & Guo, Y. (2021). Effects of age on immune function in broiler chickens. Journal of Animal Science and Biotechnology, 12(1), 42.
  23. 23. Pike, L. J. (2006). Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. Journal of lipid research, 47(7), 1597-1598.
  24. 24. Clarke, S. D., Gasperikova, D., Nelson, C., Lapillonne, A., & Heird, W. C. (2002). Fatty acid regulation of gene expression: a genomic explanation for the benefits of the mediterranean diet. Annals of the New York Academy of Sciences, 967(1), 283-298.
  25. 25. Bach, A. C., & Babayan, V. K. (1982). Medium-chain triglycerides: an update. The American journal of clinical nutrition, 36(5), 950-962.
  26. 26. Dayrit, F. M. (2015). The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists' Society, 92(1), 1-15.
  27. 27. Schönfeld, P., & Wojtczak, L. (2016). Short-and medium-chain fatty acids in energy metabolism: the cellular perspective. Journal of lipid research, 57(6), 943-954.
  28. 28. Dayrit, F. M. (2014). Lauric acid is a medium-chain fatty acid, coconut oil is a medium-chain triglyceride. Philippine Journal of Science, 143(2), 157-166.
  29. 29. Jin, X., Zhou, J., Richey, G., Wang, M., Hong, S. M. C., & Hong, S. H. (2020). Undecanoic acid, lauric acid, and N-tridecanoic acid inhibit Escherichia coli persistence and biofilm formation. Journal of microbiology and biotechnology, 31(1), 130.
  30. 30. Batovska, D. I., Todorova, T., Tsvetkova, V., & Najdenski, H. M. (2009). Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships. Polish Journal of Microbiology, 58(1), 43-47.
  31. 31. Naudí, A., Jové, M., Ayala, V., Portero-Otín, M., Barja, G., & Pamplona, R. (2013). Membrane lipid unsaturation as physiological adaptation to animal longevity. Frontiers in physiology, 4, 372.
  32. 32. Beckford, R. C., Ellestad, L. E., Proszkowiec-Weglarz, M., Farley, L., Brady, K., Angel, R., ... & Porter, T. E. (2020). Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poultry Science, 99(12), 6317-6325.
  33. 33. Li, Q., Peng, X., Burrough, E. R., Sahin, O., Gould, S. A., Gabler, N. K., ... & Patience, J. F. (2020). Dietary soluble and insoluble fiber with or without enzymes altered the intestinal microbiota in weaned pigs challenged with enterotoxigenic E. coli F18. Frontiers in microbiology, 11, 1110.
  34. 34. Mehdi, Y., Létourneau-Montminy, M. P., Gaucher, M. L., Chorfi, Y., Suresh, G., Rouissi, T., ... & Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal nutrition, 4(2), 170-178.
  35. 35. Liu, H., Pan, S., Wang, C., Yang, W., Wei, X., He, Y., ... & Si, H. (2025). Review of respiratory syndromes in poultry: pathogens, prevention, and control measures. Veterinary Research, 56(1), 101.
  36. 36. Cheng, J., Lei, H., Xie, C., Chen, J., Yi, X., Zhao, F.,  & Ji, J. (2023). B lymphocyte development in the bursa of fabricius of young broilers is influenced by the gut microbiota. Microbiology Spectrum11(2), e04799-22.

Download this article as Download

How to cite this article:

Shriniwas Sawant, Parth Sutar and Akshay Wankhade. 2025. Evaluation of FineX 3060 Supplementation on Immune Modulation, Tissue Distribution, and Pharmacokinetics.Int.J.Curr.Microbiol.App.Sci. 14(10): 261-270. doi: https://doi.org/10.20546/ijcmas.2025.1410.027
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations