![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Antibiotics remain the cornerstone of infection management in both humans and animals, targeting a wide spectrum of pathogenic microorganisms. However, the misuse and overuse of these agents have accelerated the emergence of antimicrobial resistance (AMR), posing a global public health threat. Opportunistic pathogens, which are normally harmless under healthy conditions, can become life-threatening when host immunity is compromised. Common opportunistic organisms include Salmonella spp., Shigella spp., Pseudomonas aeruginosa, Staphylococcus aureus, fungal pathogens such as Candida albicans, and protozoan parasites like Cryptosporidium. These pathogens exhibit resistance through multiple mechanisms, including genetic mutations, modification of target sites and enzymes, activation of efflux pumps, and acquisition of resistance genes via horizontal gene transfer. Such adaptive strategies significantly reduce the effectiveness of conventional antibiotics, complicating treatment and increasing morbidity and mortality rates. To address this growing challenge, novel therapeutic approaches are being explored. Promising alternatives include vaccines that prevent infection before onset, bacteriophage therapy that harnesses viruses to specifically target bacterial pathogens, nanoparticles with potent antimicrobial and biofilm-disrupting properties, and antimicrobial peptides that mimic innate host defense mechanisms. Together, these emerging strategies represent potential breakthroughs in combating AMR and restoring the efficacy of infection management. This review highlights the urgent need for innovative interventions, integrated surveillance, and responsible antibiotic stewardship. By combining conventional and novel approaches, the global community can work towards mitigating the threat of antibiotic resistance and ensuring sustainable therapeutic options for future generations.
Mohamed Mustaf Ahmed ., Hassan Hakeem Kayode ., Olalekan John Okesanya., Bonaventure Michael Ukoaka ., Gilbert Eshun ., Marina Ramzy Mourid ., Olaniyi Abideen Adigun ., Jerico Bautista Ogaya ., Zeinab Omar Mohamed ., Don Eliseo Lucero-Prisno., 2024. CRISPR-Cas Systems in the Fight Against Antimicrobial Resistance: Current Status, Potentials and Future Directions. Infection and Drug Resistance, 17, 5229–5245. https://doi.org/10.2147/IDR.S494327.
Irene Berger ., Zvi G. Loewy., 2024. Antimicrobial Resistance and Novel Alternative Approaches to Conventional Antibiotics. Bacteria, 3, 171–182. https://doi.org/10.3390/bacteria3030012.
Suresh K. Mondal., Sourav Chakraborty., Sounik Mannab., Santi M. Mandal., 2024. Antimicrobial nanoparticles: current landscape and future challenges. RSC Pharmaceutics, 1, 388– 402. https://doi.org/10.1039/d4pm00032c
Kamini Walia., Jayaprakasam Madhumathi., Balaji Veeraraghavan., Arunaloke Chakrabarti., Arti Kapil., Pallab Ray., Harpeet singh., Sujatha Sistla., V.C. Ohri., 2014., Establishing Antimicrobial Resistance Surveillance & Research Network in India: Journey so far. Indian J Med Res 149, pp 164-179. https://doi.org/10.4103/ijmr.IJMR_226_18
Vinoth gnana chellaiyan., Sasithria., 2021. Health Surveillance in India: Current and Future Prospects. Journal of Clinical and Diagnostic Research., Vol-15(11), IE01-IE04.
Jasleen Kaur., Jasmine Kaur., Ajay Singh Dhama., Shelja Jindal ., Kamini Walia.,
Harpreet Singh., 2022. Strengthening the Surveillance of Antimicrobial Resistance in India Using Integrative Technologies. Frontiers in Public Health, volume 10. https://doi.org/10.3389/fpubh.2022.861888.
Timothy Jesudason., 2024. Impact of vaccines in reducing antimicrobial resistance. Lancet Microbe, 6: 101040. https://doi.org/10.1016/j.lanmic.2024.101040.
Arushi Kapoor., Samriti Balaji Mudaliar., Vyasraj G. Bhat3., Ishita Chakraborty., Alevoor Srinivas., Bharath Prasad., Nirmal Mazumder., 2024. Phage therapy: A novel approach against multidrug?resistant pathogens. 3 Biotech, 14:256. https://doi.org/10.1007/s13205-024-04101-8.
Derek M Lin., Britt Koskella., Henry C Lin., 2017. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther, 6, 8(3), 162-173.
Weiwei Li1., Haihong Han., Jikai Liu., Bixia Ke2., Li Zhan., Xiaorong Yang., Dongmei Tan., Bo Yu., Xiang Huo., Xiaochen Ma., Tongyu Wang., Shuai Chen., Yong Sun., Weiwei Chen., Yanfen Li., Chengwei Liu., Zushun Yang., Yunchang Guo., 2023. Antimicrobial resistance profiles of Salmonella isolates from human diarrhea cases in China: an eight-year surveilance study.One Health Advances, 1:2. https://doi.org/10.1186/s44280-023-00001-3.
Sophie Lefèvre., Elisabeth Njamkep., Sarah Feldman., Corinne Ruckly., Isabelle Carle., Monique Lejay-Collin., Laëtitia Fabre., Iman Yassine., Lise Frézal., Maria Pardos de la Gandara., Arnaud Fontanet2., François-Xavier Weill., 2023. Rapid emergence of extensively drugresistant Shigella sonnei in France. Nature Communications, 14:462. https://doi.org/10.1038/s41467-023-36222-8.
JOSE M. MUNITA., CESAR A. ARIAS., 2025. Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2), VMBF-0016. https://doi.org/10.1128 /microbiolspec.VMBF-0016-2015.
Olufemi Emmanuel Akanbi., Henry Akum Njom., Justine Fri., Anthony C. Otigbu., Anna M. Clarke., 2017. Antimicrobial Susceptibility of Staphylococcus aureus Isolated from Recreational Waters and Beach Sand in Eastern Cape Province of South Africa.Int. J. Environ. Res. Public Health, 14, 1001.https://doi.org/10.3390/ijerph14091001
Ahmad Farajzadeh sheikh., Mojtaba Moosavian., Mahtab abdi., Mohsen heidary., Fatemeh shahi., nabi Jomehzadeh., sakineh seyed., Mohammadi., Morteza saki., saeed Khoshnood., 2019. Prevalence and antimicrobial resistance of Shigella species isolated from diarrheal patients in ahvaz, southwest Iran. Infection and Drug Resistance, 12, 249–253.
Steeve Giguère., Londa j. Berghaus., Jennifer M. Willingham-Lane., 2025. Antimicrobial Resistance in Rhodococcus equi. Microbiol Spectrum, 5(5), ARBA-0004-2016. https://doi.org/10.1128/microbiolspec.ARBA-0004 -2016
Wubetu Yihunie Belay., Melese Getachew., Bantayehu Addis Tegegne., Zigale Hibstu Teffera., Abebe Dagne., Tirsit Ketsela Zeleke., Rahel Belete Abebe., Abebaw Abie Gedif., Abebe Fenta., Getasew Yirdaw., Adane Tilahun., Yibeltal Aschale., 2024. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. a review. Front. Pharmacol, 15:1444781. https://doi.org/10.3389/fphar.2024.1444781.
Maëlle Duffey., Ravindra P. Jumde., Renata M.A. da Costa., Henni-Karoliina Ropponen., Benjamin Blasco., Laura J.V. Piddock., 2024. Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps. ACS Infect. Dis, 10, 1458−1482. https://doi.org/10.1021/acsinfecdis.4c00091.
Leo Pedras., 2024. Antimicrobial Resistance in Human Microbiota: Insights and Implications. J Bacteriol Parasitol, Vol.15, Iss.S28 No:1000113.
Bibek Lamichhane., Asmaa M. M. Mawad., Mohamed Saleh., William G. Kelley., Patrick J. Harrington., Cayenne W. Lovestad., Jessica Amezcua., Mohamed M. Sarhan ., Mohamed E. El Zowalaty., Hazem Ramadan., Melissa Morgan., Yosra A. Helmy., 2024. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics, 13, 76. https://doi.org/10.3390/antibiotics13010076.
Andersson DI., Hughes D., 2017. Selection and transmission of antibiotic-resistant bacteria. Microbiol Spectrum, 5(4), MTBP- 0013-2016. https://doi.org/10.1128/microbiolspec.MTBP-0013-2016
Fatema Saabir., Ayesha Hussain., Mansura Mulani., Snehal Kulkarni., Shilpa Tambe., 2022. Efflux pump and its inhibitors: Cause and cure for multidrug resistance. Journal of Applied Biology & Biotechnology, Vol. 10(03), pp. 177-194. https://doi.org/10.7324/JABB.2022.100322.
Marianne Frieri., Krishan Kumar., Anthony Boutin.2017.Antibiotic resistance. Journal of Infection and Public Health, 10, 369—378. http://dx.doi.org/10.1016/j.jiph.2016.08.007.
Irfan A. Rather., Byung-Chun Kim., Vivek K. Bajpai., Yong-Ha Park., 2017. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi Journal of Biological Sciences, 24, 808–812. http://dx.doi.org/10.1016/j.sjbs.2017.01.004.
Mary Smith., 2025. Opportunistic Pathogens: A Hidden Threat to Human Health. J Neuroinfect Dis, 16: 544. https://doi.org/10.4172/2314-7326.1000544.
Anuru Sen., Dr. Dhrubo Jyoti Sen., Dr. Sudip Kumar Mandal., Ravichandra G. Patel., Dr. Beduin Mahanti., 2020. Mycobacterium Tuberculosis: A Review. wjpmr, 6(10), 163-179.
Ignacio Uriel Macias-Paz., Salvador Pérez-Hernández., Alejandra Tavera-Tapia., Juan Pedro Luna-Arias., José Eugenio Guerra Cárdenas., Elizabeth Reyna-Beltrán., 2023. Candida albicans the main opportunistic pathogenic fungus in humans. Revista Argentina de Microbiología, 55, 189-198. https://doi.org/10.1016/j.ram.2022.08.003![]() |
![]() |
![]() |
![]() |
![]() |