![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
This study presents an eco-friendly and sustainable approach for the biosynthesis of silver nanoparticles (AgNPs) using Balanites aegyptiaca (Heglig) seed oil and aqueous extract as dual reducing and stabilizing agents. The objective of this research was to synthesize AgNPs using B. aegyptiaca extracts and evaluate their physicochemical properties and antibacterial efficacy. AgNPs were successfully synthesized by reducing silver ions from an aqueous silver nitrate solution with the B. aegyptiaca seed oil and aqueous extract. The formation and characteristics of the biosynthesized AgNPs were rigorously confirmed using UV-Vis, FTIR, and SEM. UV-Vis analysis revealed a strong surface Plasmon resonance peak at 430 nm, indicating stable AgNPs formation. FTIR spectroscopy confirmed the role of bioactive compounds from the plant extracts in both reduction and capping, with characteristic shifts in absorption bands. SEM images showed the AgNPs to be spherical and irregular in shape, with some agglomeration. Furthermore, the biosynthesized AgNPs exhibited potent antibacterial activity against both Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial strains, with notably higher efficacy against E. coli. This research highlights the viability of Balanites aegyptiaca as a sustainable and cost-effective platform for nanoparticle synthesis, offering significant potential for various biomedical applications, particularly in the development of novel antimicrobial agents.
Ahmed, M. A. and M. A. Alshareef (2018). "Extraction and physico-chemical properties of Balanites aegyptiaca (Heglig) seed oil grown in Libya." Int J Agric Res Rev 6: 674-679.
Ahmed, S., M. Ahmad, B. L. Swami and S. Ikram (2016). "Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract." Journal of radiation research and applied sciences 9(1): 1-7.
Awad, M. A., R. A. El Dib, N. Almusayeib, S. Al-Massarani, K. M. Ortashi and A. A. Hendi (2013). "Nnovel Balanites aegyptliacn mesocarp synthesized silver nanoparticles: formation, characterization, antimicrboial, cytotoxicity and antiviral effects." Digest Journal of Nanomaterials & Biostructures (DJNB) 8(4).
Dey, H. and S. Shaili (2023). "Exploring the Phytochemical Diversity and Pharmacological Potentials of Balanite Aegyptiaca: A Review." International Journal of Newgen Research in Pharmacy & Healthcare: 53-63.
Dhaka, A., S. Raj, C. k. Githala, S. Chand Mali and R. Trivedi (2022). "Balanites aegyptiaca leaf extract-mediated synthesis of silver nanoparticles and their catalytic dye degradation and antifungal efficacy." Frontiers in Bioengineering and Biotechnology 10.
Gasmalla, H. B., A. M. Idris, M. I. Shinger, D. Qin, D. Shan and X. Lu (2016). "Balanites aegyptiaca oil synthesized iron oxide nanoparticles: characterization and antibacterial activity." Journal of Biomaterials and Nanobiotechnology 7(3): 154-165.
Gupta, A., M. Maynes and S. Silver (1998). "Effects of halides on plasmid-mediated silver resistance in Escherichia coli." Appl Environ Microbiol 64(12): 5042-5045.
Harborne, A. (1998). Phytochemical methods a guide to modern techniques of plant analysis, springer science & business media.
Harikrishnan, R. and C. Balasundaram (2020). Potential of herbal extracts and bioactive compounds for human healthcare. The Role of Phytoconstitutents in Health Care, Apple Academic Press: 3-158.
Iravani, S. (2011). "Green synthesis of metal nanoparticles using plants." Green chemistry 13(10): 2638-2650.
Jadoun, S., R. Arif, N. K. Jangid and R. K. Meena (2021). "Green synthesis of nanoparticles using plant extracts: a review." Environmental Chemistry Letters 19(1): 355-374.
Jafarizad, A., K. Safaee, S. Gharibian, Y. Omidi and D. Ekinci (2015). "Biosynthesis and In-vitro Study of Gold Nanoparticles Using Mentha and Pelargonium Extracts." Procedia Materials Science 11: 224-230.
Jain, S. and M. S. Mehata (2017). "Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property." Scientific reports 7(1): 15867.
Jose Ruben, M., E. Jose Luis, C. Alejandra, H. Katherine, B. K. Juan, R. Jose Tapia and Y. Miguel Jose (2005). "The bactericidal effect of silver nanoparticles." Nanotechnology 16(10): 2346.
Kasture, M. B., P. Patel, A. A. Prabhune, C. V. Ramana, A. A. Kulkarni and B. L. V. Prasad (2008). "Synthesis of silver nanoparticles by sophorolipids: Effect of temperature and sophorolipid structure on the size of particles." Journal of Chemical Sciences 120(6): 515-520.
Khalil, M. M., E. H. Ismail, K. Z. El-Baghdady and D. Mohamed (2014). "Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity." Arabian Journal of chemistry 7(6): 1131-1139.
Kharissova, O. V., H. R. Dias, B. I. Kharisov, B. O. Pérez and V. M. J. Pérez (2013). "The greener synthesis of nanoparticles." Trends in biotechnology 31(4): 240-248.
Koko, W., M. A. Mesaik, S. Yousaf, M. Galal and M. I. Choudhary (2008). "In vitro immunomodulating properties of selected Sudanese medicinal plants." Journal of ethnopharmacology 118(1): 26-34.
Kumar, C. G., S. K. Mamidyala, B. Das, B. Sridhar, G. S. Devi and M. S. Karuna (2010). "Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R." J Microbiol Biotechnol 20(7): 1061-1068.
Kvítek, L., A. Paná?ek, J. Soukupová, M. Kolá?, R. Ve?e?ová, R. Prucek, M. Holecová and R. Zbo?il (2008). "Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs)." The Journal of Physical Chemistry C 112(15): 5825-5834.
Matsumura, Y., K. Yoshikata, S. Kunisaki and T. Tsuchido (2003). "Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate." Appl Environ Microbiol 69(7): 4278-4281.
Mittal, A. K., Y. Chisti and U. C. Banerjee (2013). "Synthesis of metallic nanoparticles using plant extracts." Biotechnology advances 31(2): 346-356.
Mortadha, A., A. Tahseen and A. Imad (2015). "Extraction of date palm seed oil (Phoenix dactylifera L.) by soxhlet apparatus." International Journal of Advances Engineering and Technology 8(3): 261-271.
Murthy, H. N., G. G. Yadav, Y. H. Dewir and A. Ibrahim (2020). "Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile)." Plants 10(1): 32.
Nallal, V. U. M., K. Prabha, I. VethaPotheher, B. Ravindran, A. Baazeem, S. W. Chang, G. A. Otunola and M. Razia (2021). "Sunlight-driven rapid and facile synthesis of Silver nanoparticles using Allium ampeloprasum extract with enhanced antioxidant and antifungal activity." Saudi journal of biological sciences 28(7): 3660-3668.
Rai, M., A. Yadav and A. Gade (2009). "Silver nanoparticles as a new generation of antimicrobials." Biotechnology advances 27(1): 76-83.
Singh, J., T. Dutta, K.-H. Kim, M. Rawat, P. Samddar and P. Kumar (2018). "‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation." Journal of nanobiotechnology 16(1): 84.
Singh, P., Y.-J. Kim, D. Zhang and D.-C. Yang (2016). "Biological synthesis of nanoparticles from plants and microorganisms." Trends in biotechnology 34(7): 588-599.![]() |
![]() |
![]() |
![]() |
![]() |