![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Metabolism, an important activity is essential for microbial population build up. This activity is joined with metabolism interfering virulence factors leading to dominance of one species in a mixed culture. In a linear relation, more microbial growth leads to more infective propagule (I.P.) count, and mixed culture activity is seen in many environments including organic matter decomposition. The present work will be studying the interaction between metabolism, virulence and I.P. count of microorganisms, and will be emphasizing on the understandings and advancements between metabolism and virulence.
Aguilar-Paredes, A., Valdés, G., Araneda, N., Valdebenito, E., Hansen, F., Nuti, M., (2023). Microbial community in the composting process and its positive impact on the soil biota in sustainable agriculture. Agronomy 13, 542. https://doi.org/10.3390/agronomy13020542
Ardestani, M.M., Kukla, J., Cajthaml, T., Baldrian, P., Frouz, J., (2025). Microbial diversity drives decomposition more than advantage of home environment-evidence from a manipulation experiment with leaf litter. Microorganisms 13(2), 351. https://doi.org/10.3390/microorganisms13020351 . PMID: 40005718; PMCID: PMC11858187
Bidondo, L.F., Colombo, R., Bompadre, J., Benavides, M., Scorza, V., Silvani, V., Pérgola, M., Godeas, A., (2016). Cultivable bacteria associated with infective propagules of arbuscular mycorrhizal fungi. Implications for mycorrhizal activity. Applied Soil Ecology 105, 86-90. https://doi.org/10.1016/j.apsoil.2016.04.013.
Cate, J.D., Sullivan, Y.Z., King, M.D. (2024). Inhibition of Microbial Growth and Biofilm Formation in Pure and Mixed Bacterial Samples. Microorganisms 12, 1500. https://doi.org/10.3390/microorganisms12071500
Forsmark, B., Bizjak, T., Nordin, A., Rosenstock, N.P., Wallander, H., Gundale, M.J., (2024). Shifts in microbial community composition and metabolism correspond with rapid soil carbon accumulation in response to 20 years of simulated nitrogen deposition. Sci Total Environ 918, 170741. https://doi.org/10.1016/j.scitotenv.2024.170741. Epub 2024 Feb 6. PMID: 38325494.
Gonzalez, J.M., Aranda, B., (2023). Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms. 11(7), 1641. https://doi.org/10.3390/microorganisms11071641 . PMID: 37512814; PMCID: PMC10383181
Hardie, K., (2019). Where bacterial metabolism and virulence intersect. https://microbiologysociety.org/publication/past-issues/metabolism-health-and-disease/article/where- bacterial-metabolism-and-virulence-intersect.html Accessed 22 August 2025
Hasenoehrl, E.J., Wiggins, T.J., Berney, M., (2021). Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 10, 611683. https://doi.org/10.3389/fcimb.2020.611683
Jiao, W., Liu, X., Li, Y., Li, B., Du, Y., Zhang, Z., Chen, Q., Fu, M., (2022). Organic acid, a virulence factor for pathogenic fungi, causing postharvest decay in fruits. Molecular Plant Pathology 23, 304–312. https://doi.org/10.1111/mpp.13159
Lively, C.M., (2005). Evolution of virulence: coinfection and propagule production in spore-producing parasites. BMC Evol Biol 5, 64. https://doi.org/10.1186/1471-2148-5-64
Nasslahsen, B., Prin, Y., Ferhout, H., Smouni, A., Duponnois, R., (2022). Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity. Front Soil Sci 2, 979246. https://doi.org/10.3389/fsoil.2022.979246
Pajon, C., Fortoul, M.C., Diaz-Tang, G., Marin Meneses, E., Kalifa, A.R., Sevy, E., Mariah, T., Toscan, B., Marcelin, M., Hernandez, D.M., Marzouk, M.M., Lopatkin, A.J., Eldakar, O.T., Smith, R.P., (2023). Interactions between metabolism and growth can determine the co-existence of Staphylococcus aureus and Pseudomonas aeruginosa. Elife 12, e83664. https://doi.org/10.7554/eLife.83664.
Raihan, T., Rabbee, M.F., Roy, P., Choudhury, S., Baek, K.-H., Azad, A.K., (2021). Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Front Mol Biosci 8, 732256. https://doi.org/10.3389/fmolb.2021.732256
Samantaray, A., Chattaraj, S., Mitra, D., Ganguly, A., Kumar, R., Gaur, A., Mohapatra, P.K.D., Santos- Villalobos, S.L., Rani, A., Thatoi, H., (2024). Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. Curr Res Microb Sci 7, 100251. https://doi.org/10.1016/j.crmicr.2024.100251.
Somerville, G.A., Proctor, R.A., (2009). At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 73(2), 233-48. https://doi.org/10.1128/MMBR.00005-09. PMID: 19487727; PMCID: PMC2698418.
Yang, H., Ma, L., Fu, M., Li, K., Li, Y., Li, Q., (2023). Mechanism analysis of humification coupling metabolic pathways based on cow dung composting with ionic liquids. J Environ Manage 325(Pt A), 116426. https://doi.org/10.1016/j.jenvman.2022.116426. Epub 2022 Oct 11. PMID: 36240639.
Bhagwat, A., Haldar, T., Kanojiya, P., & Saroj, S. D. (2025). Bacterial metabolism in the host and its association with virulence. Virulence, 16(1), Article 2459336. https://doi.org/10.1080/21505594.2025.2459336
![]() |
![]() |
![]() |
![]() |
![]() |