![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Multidrug resistant (MDR) Acinetobacter is an important pathogen which has a number of virulence characteristics that enable them to render resistance to antibiotics thus complicates the treatment options, thereby forcing clinicians to rely on last resort antibiotic such as colistin. However, resistance to colistin has also been reported, further increasing the challenge. To detect the virulence attributes, colistin resistance and carbapenemase production in MDR Acinetobacter baumannii from a tertiary care hospital in South India. This is a prospective study conducted over a period of 15 months from August 2023 to October 2024 with 110 isolates of MDR Acinetobacter baumannii. All the isolates were subjected to colistin resistance detection using microbroth dilution method, carbapenemase detection using mCIM and eCIM methods, virulence detection like biofilm production by tissue culture plate method, haemolytic activity on blood agar, proteolytic activity on milk agar and siderophore production on Chrome Azurol S agar. Of the 110 isolates of MDR A. baumannii, 19 (17.27%) showed colistin resistance, 89 (80.90%) showed biofilm production, 35 (31.81%) showed haemolysis, 60 (54.54%) showed proteolysis and 49 (44.54%) showed siderophore production. The serine carbapenemase from mCIM and metallo beta-lactamase producers from eCIM tests were 61 (55.45%) serine carbapenemase and 70 (63.63%) respectively. This study underscores the concerning prevalence of virulence and resistance determinants among MDR A. baumannii, providing clinicians and infection control specialists with essential data to guide the formulation of effective empirical treatment strategies and infection control measures.
Almasaudi, S.B. et al., (2018) ‘Acinetobacter baumannii infection: Epidemiology, pathogenesis, clinical features, diagnosis, and antimicrobial resistance’, Saudi Journal of Biological Sciences, 25(3), pp. 586–596. https://doi.org/10.1016/j.sjbs.2016.02.009
Amin, M., Navidifar, T., Shooshtari, F.S., Rashno, M., Savari, M., Jahangirmehr, F. et al., (2019) ‘Association between biofilm formation, structure, and the expression levels of genes related to biofilm formation and biofilm-specific resistance of Acinetobacter baumannii strains isolated from burn infection in Ahvaz, Iran’, Infection and Drug Resistance, 12, pp. 3867–3881. https://doi.org/10.2147/IDR.S228981.
Antunes, L.C., Imperi, F., Carattoli, A. and Visca, P. (2011) ‘Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity’, PLoS One, 6(8), e22674. https://doi.org/10.1371/journal.pone.0022674.
Ayoub Moubareck, C. and Hammoudi Halat, D. (2020) ‘Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen’, Antibiotics, 9(3), p. 119.
Bardbari, A.M., Arabestani, M.R., Karami, M., Keramat, F., Alikhani, M.Y. and Bagheri, K.P. (2017) ‘Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates’, Microbial Pathogenesis, 108, pp. 122–128. https://doi.org/10.1016/j.micpath.2017.04.039.
Bassetti, M., Righi, E., Vena, A. et al., (2014) ‘Role of colistin, tigecycline, and rifampicin in multidrug-resistant Acinetobacter baumannii infections’, Current Opinion in Infectious Diseases, 27(6), pp. 558–565.
BioMérieux India (n.d.) Available at: https://www.biomerieux.com/corp/en.html (Accessed: 11 August 2025).
Boulesnam, S.L., Hamaidi-Chergui, F., Benamara, M. and Azrou, S. (2023) ‘Phenotypical comparison between environmental and clinical Acinetobacter baumannii strains isolated from an intensive care unit’, The Malaysian Journal of Medical Sciences, 30(4), pp. 85–93. https://doi.org/10.21315/mjms2023.30.4.8.
Christensen, G.D., Simpson, W.A., Younger, J.A., Baddour, L.M., Barrett, F.F., Melton, D.M. et al., (1985) ‘Adherence of coagulase negative staphylococci to plastic tissue cultures: A quantitative model for the adherence of staphylococci to medical devices’, Journal of Clinical Microbiology, 22(6), pp. 996–1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985.
Eze, E.C., Chenia, H.Y. and El Zowalaty, M.E. (2018) ‘Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments’, Infection and Drug Resistance, 11, pp. 2277–2299. https://doi.org/10.2147/IDR.S169894.
Fleming, I.D., Krezalek, M.A., Belogortseva, N., Zaborin, A., Defazio, J., Chandrasekar, L. et al., (2017) ‘Modeling Acinetobacter baumannii wound infections: The critical role of iron’, The Journal of Trauma and Acute Care Surgery, 82(3), pp. 557–565. https://doi.org/10.1097/TA.0000000000001338.
Harding, C.M., Hennon, S.W. and Feldman, M.F. (2018) ‘Uncovering the mechanisms of Acinetobacter baumannii virulence’, Nature Reviews Microbiology, 16(2), pp. 91–102. https://doi.org/10.1038/nrmicro.2017.148.
HiMedia Laboratories Pvt Ltd India (n.d.) Available at: https://www.himedialabs.com (Accessed: 11 August 2025).
Holt, K., Kenyon, J.J., Hamidian, M., Schultz, M.B., Pickard, D.J., Dougan, G. et al., (2016) ‘Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1’, Microbial Genomics, 2(2), e000052. https://doi.org/10.1099/mgen.0.000052.
Huang, H., Chen, B., Liu, G. et al., (2018) ‘A multi-center study on the risk factors of infection caused by multi-drug resistant Acinetobacter baumannii’, BMC Infectious Diseases, 18, p. 11. https://doi.org/10.1186/s12879-017-2932-5.
Jeannot, K., Bolard, A. and Plésiat, P. (2017) ‘Resistance to polymyxins in Gram-negative organisms’, International Journal of Antimicrobial Agents, 49(5), pp. 526–535.
Jones, B.V., Sun, F., Marchesi, J.R. and Wellington, E.M. (2007) ‘Using skimmed-milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives’, Letters in Applied Microbiology, 45(4), pp. 418–420. https://doi.org/10.1111/j.1472-765X.2007.02202.x.
Ko, W.C., Lee, H.C., Chiang, S.R., Yan, J.J., Wu, J.J. and Wu, M.S. (2000) ‘In vitro and in vivo activity of fluoroquinolones against Acinetobacter baumannii’, Antimicrobial Agents and Chemotherapy, 44(1), pp. 201–205.
Lee, C.R., Lee, J.H., Park, M., Park, K.S., Bae, I.K., Kim, Y.B. et al., (2017) ‘Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options’, Frontiers in Cellular and Infection Microbiology, 7, p. 55. https://doi.org/10.3389/fcimb.2017.00055.
Lee, K., Yong, D., Jeong, S.H. et al., (2011) ‘Multidrug-resistant Acinetobacter spp.: Increasingly problematic nosocomial pathogens’, Yonsei Medical Journal, 52(6), pp. 879–891. https://doi.org/10.3349/ymj.2011.52.6.879
Lee, Y.H. (2019) ‘Siderophore production by Acinetobacter baumannii clinical isolates and its correlation with antimicrobial resistance’, Journal of Antimicrobial Chemotherapy, 74(3), pp. 726–731.
Martínez-Trejo, A., Ruiz-Ruiz, J.M., Gonzalez-Avila, L.U., Saldaña-Padilla, A., Hernández-Cortez, C., Loyola-Cruz, M.A. et al., (2022) ‘Evasion of antimicrobial activity in Acinetobacter baumannii by target site modifications: An effective resistance mechanism’, International Journal of Molecular Sciences, 23(12), 6582. https://doi.org/10.3390/ijms23126582.
MICROXPRESS® A Division of Tulip Diagnostics Pvt. Ltd. India (n.d.) Available at: https://www.microxpress.in/uploads/product/micropro®-bmd-kit_technicaldetails_106720240330.072737.pdf (Accessed: 11 August 2025).
Nang, S.C., Li, J. and Velkov, T. (2019) ‘The rise and spread of colistin resistance: A review of molecular mechanisms and epidemiology’, Expert Review of Anti-infective Therapy, 17(5), pp. 409–428.
Nemec, A., Krizova, L., Maixnerova, M., Sedo, O., Brisse, S. and Higgins, P.G. (2015) ‘Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus–Acinetobacter baumannii complex isolated from human clinical specimens’, International Journal of Systematic and Evolutionary Microbiology, 65(Pt 3), pp. 934–942. https://doi.org/10.1099/ijs.0.000043.
Peleg, A.Y., Seifert, H. and Paterson, D.L. (2008) ‘Acinetobacter baumannii: Emergence of a successful pathogen’, Clinical Microbiology Reviews, 21(3), pp. 538–582. https://doi.org/10.1128/CMR.00058-07.
Poirel, L., Jayol, A. and Nordmann, P. (2017) ‘Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes’, Clinical Microbiology Reviews, 30(2), pp. 557–596. https://doi.org/10.1128/CMR.00064-16.
Pournaras, S., Zarrilli, R., Higgins, P.G. and Tsioutis, C. (2021) ‘Editorial: Carbapenemase-producing organisms as leading cause of hospital infections’, Frontiers in Medicine, 8, 775021. https://doi.org/10.3389/fmed.2021.775021.
Rajshekar, D., Sujatha, S.R., Karthik, M.V.S.K. and Raveendran, S. (2024) ‘Evaluation of phenotypic carbapenem inactivation methods among carbapenem resistant gram-negative bacteria isolated from blood culture specimens and their synergy testing’, Indian Journal of Microbiology Research, 11(3), pp. 175–179. https://doi.org/10.18231/j.ijmr.2024.032.
Rumbo-Feal, S., Gómez, M.J., Gayoso, C., Álvarez-Fraga, L., Cabral, M.P., Aransay, A.M. et al., (2013) ‘Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells’, PLoS One, 8(8), e72968. https://doi.org/10.1371/journal.pone.0072968.
Schwyn, B. and Neilands, J.B. (1987) ‘Universal chemical assay for the detection and determination of siderophores’, Analytical Biochemistry, 160(1), pp. 47–56. https://doi.org/10.1016/0003-2697(87)90612-9.
Smith, M.G., Gianoulis, T.A., Pukatzki, S., Mekalanos, J.J., Ornston, L.N., Gerstein, M. et al., (2007) ‘New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis’, Genes & Development, 21(5), pp. 601–614. https://doi.org/10.1101/gad.1510307.
Thummeepak, R., Kongthai, P., Leungtongkam, U. and Sitthisak, S. (2016) ‘Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates’, International Microbiology, 19(2), pp. 121–129. https://doi.org/10.2436/20.1501.01.270.
Vijayakumar, S., Mathur, P., Kapil, A., Das, B.K., Ray, P., Gautam, V. et al., (2019) ‘Molecular characterization and epidemiology of carbapenem-resistant Acinetobacter baumannii collected across India’, The Indian Journal of Medical Research, 149(2), pp. 240–246. https://doi.org/10.4103/ijmr.IJMR_2085_17.
Wu, W., He, Y., Lu, J. et al., (2019) ‘NDM metallo-β-lactamase-producing Acinetobacter baumannii, China’, Emerging Infectious Diseases, 25(5), pp. 996–1002.
Yadav, S.K., Bhujel, R., Hamal, P., Mishra, S.K., Sharma, S. and Sherchand, J.B. (2020) ‘Burden of multidrug-resistant Acinetobacter baumannii infection in hospitalized patients in a tertiary care hospital of Nepal’, Infection and Drug Resistance, 13, pp. 725–732. https://doi.org/10.2147/IDR.S239514.
Zong, Z. (2018) ‘Characterization of siderophore production in MDR Acinetobacter baumannii clinical isolates’, Journal of Clinical Microbiology, 56(5), e01892-17.![]() |
![]() |
![]() |
![]() |
![]() |