![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
For centuries, sericulture has revolved around silk production, with the mulberry silkworm as its core. However, silkworm pupae long considered a by-product are now gaining recognition for their remarkable value beyond silk. Rich in high-quality proteins, essential fatty acids, and bioactive compounds, silkworm pupae offer significant potential as a sustainable alternative protein source for human consumption and animal feed, particularly in aquaculture. Also, silkworm pupae offer promising benefits for human, acting as natural α- glucosidase inhibitor, helping to lower post-meal blood glucose levels. Their oil, characterized by a favorable unsaturated fatty acid profile and antioxidant properties, is gaining traction in the food, cosmetic, and pharmaceutical industries. Recent research has also uncovered bioactive peptides in pupae with promising health benefits, opening new doors in the nutraceutical and biomedical sectors.
Abdoli, R., Mazumder, T.H., Nematollahian, S., Zanjani, R.S., Mesbah, R.A. and Uddin, A., 2022. Gaining insights into the compositional constraints and molecular phylogeny of five silkworms mitochondrial genome. International Journal of Biological Macromolecules, 206, pp.543-552. https://doi.org/10.1016/j.ijbiomac.2022.02.135.
Ali, M.F.Z., Nakahara, S., Otsu, Y., Ido, A., Miura, C. and Miura, T., 2022. Effects of functional polysaccharide from silkworm as an immunostimulant on transcriptional profiling and disease resistance in fish. Journal of Insects as Food and Feed, 8(11), pp.1221-1234. https://doi.org/10.3920/JIFF2021.0108.
Ali, M.F.Z., Yasin, I.A., Ohta, T., Hashizume, A., Ido, A., Takahashi, T., Miura, C. and Miura, T., 2018. The silkrose of Bombyx mori effectively prevents vibriosis in penaeid prawns via the activation of innate immunity. Scientific reports, 8(1), p.8836. https://doi.org/10.1038/s41598-018-27241-3
Altomare, A.A., Baron, G., Aldini, G., Carini, M. and D'Amato, A., 2020. Silkworm pupae as source of high?value edible proteins and of bioactive peptides. Food Science & Nutrition, 8(6), pp.2652-2661. https://doi.org/10.1002/fsn3.1546.
Arasakumar, E., Manimegalai, S. and Priyadharshini, P., 2021. Extraction of Oil from Mulberry and Eri Silkworm Pupae and Analyzing the Physio-Chemical Properties for Commercial Utilization. Madras Agricultural Journal, 108. https://doi.org/10.29321/MAJ.10.000523
Battampara, P., Sathish, T.N., Reddy, R., Guna, V., Nagananda, G.S., Reddy, N., Ramesha, B.S., Maharaddi, V.H., Rao, A.P., Ravikumar, H.N. and Biradar, A., 2020. Properties of chitin and chitosan extracted from silkworm pupae and egg shells. International Journal of Biological Macromolecules, 161, pp.1296-1304. https://doi/10.1016/j.ijbiomac.2020.07.161.
Bharath, K. B., Chandrashekar, S., and Pallavi. (2024). Silkworm pupae: A goldmine waste. Journal of Entomology and Zoology Studies, 12(4), 231–236.
Cermeno, M., Bascón, C., Amigo-Benavent, M., Felix, M. and FitzGerald, R.J., 2022. Identification of peptides from edible silkworm pupae (Bombyx mori ) protein hydrolysates with antioxidant activity. Journal of Functional Foods, 92, p.105052. https://doi.org/10.1016/j.jff.2022.105502.
Cha, J.Y., Kim, Y.S., Moon, H.I. and Cho, Y.S., 2012. RETRACTED: Hepatoprotective effects on alcoholic liver disease of fermented silkworms with Bacillus subtilis and Aspergillus kawachii. International Journal of Food Sciences and Nutrition, 63(5), pp.537-547. https://doi.org/10.3109/09637486.2011.607801.
Chen, J., Wu, X.F. and Zhang, Y.Z., 2006. Expression, purification and characterization of human GM-CSF using silkworm pupae (Bombyx mori ) as a bioreactor. Journal of biotechnology, 123(2), pp.236-247. https://doi.org/10.1016/j.jbiotec.2005.11.015.
Cho, S.H., 2010. Effect of fishmeal substitution with various animal and/or plant protein sources in the diet of the abalone Haliotis discus hannai Ino. Aquaculture research, 41(10), pp.e587-e593. https://doi.org/10.1111/j.1365-2109.2010.02561.x.
Choudhury, M., Barman, K., Banik, S. and Das, P.J., 2021. Effect of dietary inclusion of muga silkworm pupa meal on the growth performance of large white Yorkshire grower pigs. Int. J. Creat. Res. Thoughts, 9, pp.493-498. IJCRT2105062.
Chukiatsiri, S., Siriwong, S. and Thumanu, K., 2020. Pupae protein extracts exert anticancer effects by downregulating the expression of IL-6, IL-1β and TNF-α through biomolecular changes in human breast cancer cells. Biomedicine & Pharmacotherapy, 128, p.110278. https://doi.org/10.1016/j.biopha.2020.110278.
Coll, J.F.C., Crespi, M.P.A.L., Itagiba, M.G.O.R., Souza, J.C.D., Gomes, A.V.C. and Donatti, F.C., 1992. Utilization of silkworm pupae meal (Bombyx mori L.) as a source of protein in the diet of growing-finishing pigs. Rev. Bras. Zootec, 21, pp.378-383.
Datta, R.K. and Nanavaty, M., 2005. Global silk industry: A complete source book. Universal-Publishers.
de Castro, R.J.S., Ohara, A., dos Santos Aguilar, J.G. and Domingues, M.A.F., 2018. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in food science & technology, 76, pp.82-89. https://doi.org/10.1016/j.tifs.2018.04.006.
Deori, M., Boruah, D.C., Devi, D. and Devi, R., 2014. Antioxidant and antigenotoxic effects of pupae of the muga silkworm Antheraea assamensis. Food Bioscience, 5, pp.108-114. https://doi.org/10.1016/j.fbio.2013.12.001.
Dev, P., Ramappa, V. and Gopal, R., 2017. Sangeeta. Analysis of chemical composition of mulberry silkworm pupal oil with fourier transform infrared spectroscopy (FTIR), gas chromatography/mass spectrometry (GC/MS) and its antimicrobial property. Asian J Agric Res, 11(4), pp.108-115.
Dutta, A., Dutta, S. and Kumari, S., 2012. Growth of poultry chicks fed on formulated feed containing silk worm pupae meal as protein supplement and commercial diet.
Elahi, U., Xu, C.C., Wang, J., Lin, J., Wu, S.G., Zhang, H.J. and Qi, G.H., 2022. Insect meal as a feed ingredient for poultry. Animal bioscience, 35(2), p.332. https://doi.org/10.5713/ab.21.0435.
Feng, Y., Chen, X.M., Zhao, M., He, Z., Sun, L., Wang, C.Y. and Ding, W.F., 2018. Edible insects in China: Utilization and prospects. Insect science, 25(2), pp.184-198. https://doi.org/10.1111/1744-7917.12449.
H?beanu, M., Gheorghe, A. and Mihalcea, T., 2023. Nutritional value of silkworm pupae (Bombyx mori ) with emphases on fatty acids profile and their potential applications for humans and animals. Insects, 14(3), p.254. https://doi.org/10.3390/insects14030254.
Hasan, M.R., 1991. Studies on the use of poultry offal and silk worm pupae as dietary protein sources for Indian major carp, Catla (Hamilton)[Bangladesh].
Hrebie??Filisi?ska, A., 2021. Application of natural antioxidants in the oxidative stabilization of fish oils: A mini?review. Journal of Food Processing and Preservation, 45(4), p.e15342. https://doi.org/10.1111/jfpp.15342.
Hu, B., Li, C., Zhang, Z., Zhao, Q., Zhu, Y., Su, Z. and Chen, Y., 2017. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities. Food Chemistry, 231, pp.348-355. https://doi.org/10.1016/j.foodchem.2017.03152.
Hu, D., Liu, Q., Cui, H., Wang, H., Han, D. and Xu, H., 2005. Effects of amino acids from selenium-rich silkworm pupas on human hepatoma cells. Life Sciences, 77(17), pp.2098-2110. https://doi.org/10.1016/j.lfs.2005.02.017.
Ijaiya, A.T. and Eko, E.O., 2009. Effect of replacing dietary fish meal with silkworm (Anaphe infracta) caterpillar meal on growth, digestibility and economics of production of starter broiler chickens. Pakistan Journal of Nutrition, 8(6), pp.845-849.
Jaiswal, K.K. and Banerjee, I., 2021. Recent trends in the development and diversification of sericulture natural products for innovative and sustainable applications. Bioresource technology reports, 13, p.100614. https://doi.org/10.1016/j.biteb.2020.100614.
Jeyaprakashsabari, S. and Aanand, S., 2021. Silkworm pupae meal—a promising fish meal substitute in aqua feed. AgriCos e-Newsl, 2, p.17.
Jintasataporn, O., 2012. Production performance of broiler chickens fed with silkworm pupa (Bombyx mori ). Journal of Agricultural Science and Technology. A, 2(4A), p.505.
Joshi, P.S., Rao, P.V., Mitra, A. and Rao, B.S., 1980. Evaluation of deoiled silkworm pupae-meal on layer performance.
Kang-Sun Ryu.2011. The research trend for improving added value of sericulture. 5th Bacsa international conference “sericulture for multi products – new prospects for development” April 11th – 15th 2011 Bucharest, Romania (Proceedings).
Karthick Raja, P., Aanand, S., Stephen Sampathkumar, J. and Padmavathy, P., 2019. Silkworm pupae meal as alternative source of protein in fish feed. Journal of Entomology and Zoology Studies, 7(4), pp.78-85.
Khatun, R., Howlider, M.A.R., Rahman, M.M., Hasanuzzaman, M. and Rahman, M.Z., 2003. Replacement of fish meal by silkworm pupae in broiler diets. Pakistan Journal of Biological Sciences, 6(11), pp.955-958.
Kim, Y., Kim, H., Jeon, B., Lee, D.W. and Ryu, S., 2016. Increased muscle mass after resistance exercise training and ingestion of silkworm pupae powder (Bombyx mori L.) in ICR mice. Korean J Appl Entomol, 55, pp.1-9. https://doi.org/10.5656/KSAE.2015.10.0.031
Köhler, R., Kariuki, L., Lambert, C. and Biesalski, H.K., 2019. Protein, amino acid and mineral composition of some edible insects from Thailand. Journal of Asia-Pacific Entomology, 22(1), pp.372-378. https://doi.org/10.1016/j.aspen.2019.02.002.
Kwon, M.G., Kim, D.S., Lee, J.H., Park, S.W., Choo, Y.K., Han, Y.S., Kim, J.S., Hwang, K.A., Ko, K. and Ko, K., 2012. Isolation and analysis of natural compounds from silkworm pupae and effect of its extracts on alcohol detoxification. Entomological Research, 42(1), pp.55-62. https://doi.org/10.1111/j.1748-5967.2011.00439.
Lança de Morais, I., Lunet, N., Albuquerque, G., Gelormini, M., Casal, S., Damasceno, A., Pinho, O., Moreira, P., Jewell, J., Breda, J. and Padrão, P., 2018. The sodium and potassium content of the most commonly available street foods in Tajikistan and Kyrgyzstan in the context of the FEEDCities project. Nutrients, 10(1), p.98. https://doi.org/10.3390/nu10010098.
Lee, J.H., Jo, Y.Y., Ju, W.T., Kim, K.Y. and Kweon, H., 2019. Effects of silkworm and its by-products on muscle mass and exercise performance in ICR mice. International Journal of Industrial Entomology and Biomaterials, 39(1), pp.34-38. https://doi.org/10.7852/ije.2019.39.1.34.
Lee, J.H., Jo, Y.Y., Kim, S.W. and Kweon, H., 2021. Antioxidant capacity of silkworm pupa according to extraction condition, variety, pupation time, and sex. International Journal of Industrial Entomology, 43(2). https://doi.org/10.7582/ijie.2021.43.2.59.
Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., AlMazroa, M.A., Amann, M., Anderson, H.R., Andrews, K.G. and Aryee, M., 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet, 380(9859), pp.2224-2260. https://doi.org/10.1016/s0140-6736(12)61766-8.
Liu, Q., Liang, X., Hu, D., Chen, P., Tian, J. and Zhang, H., 2010. Purification and characterization of two major selenium-containing proteins in selenium-rich silkworm pupas. Frontiers of Chemistry in China, 5(1), pp.88-98.
Liu, Z.Q., 2022. Why natural antioxidants are readily recognized by biological systems? 3D architecture plays a role!. Food Chemistry, 380, p.132143. https://doi.org/10.1016/j.foodchem.2022.132143.
Long, X., Song, J., Zhao, X., Zhang, Y., Wang, H., Liu, X. and Suo, H., 2020. Silkworm pupa oil attenuates acetaminophen?induced acute liver injury by inhibiting oxidative stress?mediated NF?κB signaling. Food Science & Nutrition, 8(1), pp.237-245. https://doi.org/10.1002/fsn3.1296.
Long, X., Zhao, X., Wang, W., Zhang, Y., Wang, H., Liu, X. and Suo, H., 2019. Protective effect of silkworm pupa oil on hydrochloric acid/ethanol?induced gastric ulcers. Journal of the Science of Food and Agriculture, 99(6), pp.2974-2986. https://doi.org/10.1002/jsfa.9511.
Longvah, T., Manghtya, K. and Qadri, S.S., 2012. Eri silkworm: A source of edible oil with a high content of α?linolenic acid and of significant nutritional value. Journal of the Science of Food and Agriculture, 92(9), pp.1988-1993. https://doi.org/10.1002/jsfa.5572.
Longvah, T., Mangthya, K. and Ramulu, P.J.F.C., 2011. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food chemistry, 128(2), pp.400-403. https://doi.org/10.1016/j.foodchem.2011.03.041.
Mahesh, D.S., Vidhathri, B.S., Narayanaswamy, T.K., Subbarayappa, C.T., Muthuraju, R. and Shruthi, P., 2015. www. ijarbs. com. Int. J. Adv. Res. Biol. Sci, 2(9), pp.135-140.
Manosroi, A., Boonpisuttinant, K., Winitchai, S., Manosroi, W. and Manosroi, J., 2010. Free radical scavenging and tyrosinase inhibition activity of oils and sericin extracted from Thai native silkworms (Bombyx mori ). Pharmaceutical Biology, 48(8), pp.855-860. https://doi.org/10.3109/13880200903300212.
Medhi, D., 2011. Effects of enzyme supplemented diet on finishing crossbred pigs at different levels of silk worm pupae meal in diet. Indian Journal of Field Veterinarians, 7(1).
Mishra, N., Hazarika, N.C., Narain, K. and Mahanta, J., 2003. Nutritive value of non-mulberry and mulberry silkworm pupae and consumption pattern in Assam, India. Nutrition Research, 23(10), pp.1303-1311. https://doi.org/10.1016/S0271-5317(03)00132-5.
Nandeesha, M.C., Srikanth, G.K., Keshavanath, P., Varghese, T.J., Basavaraja, N. and Das, S.K., 1990. Effects of non-defatted silkworm-pupae in diets on the growth of common carp, Cyprinus carpio. Biological Wastes, 33(1), pp.17-23. https://doi.org/10.1016/0269-7483(90)90118-C.
Nandeesha, M.C., Srikanth, G.K., Varghese, T., Keshavanath, P. and Shetty, H.C., 1990. Growth performance of Cyprinus carpio var. communis fed on diets containing different levels of de-oiled silkworm pupae. In The second Asian Fisheries Forum. Asian Fisheries Society Manila (pp. 271-274).
Natarajan, D.P. and Marimuthu, T., 2023. Production of high-quality biodiesel through methanolysis of Bombyx mori pupae waste oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), pp.5508-5520. https://doi.org/10.1080/1557036.2023.2210087.
Ni, H., Chen, H.X. and Yang, Y.Y., 2003. The technology of the comprehensive utilization of oak silkworm pupae. Journal-Hubei University Natural Science Edition, 25(3), pp.263-266.
Nowak, V., Persijn, D., Rittenschober, D. and Charrondiere, U.R., 2016. Review of food composition data for edible insects. Food chemistry, 193, pp.39-46. https://doi.org/10.1016/j.foodchem.2014.10.114.
Omotoso, O.T., 2015. An Evaluation of the Nutrients and Some Anti-nutrients in Silkworm, Bombyxmori L.(Bombycidae: Lepidoptera). Jordan Journal of Biological Sciences, 8(1).
Patil, S.R., Amena, S., Vikas, A., Rahul, P., Jagadeesh, K. and Praveen, K., 2013. Utilization of silkworm litter and pupal waste-an eco-friendly approach for mass production of Bacillus thuringiensis. Bioresource technology, 131, pp.545-547. https://doi.org/10.1016/j.biotech.2012.12.153.
Paul, D. and Dey, S., 2014. Essential amino acids, lipid profile and fat-soluble vitamins of the edible silkworm Bombyx mori (Lepidoptera: Bombycidae). International Journal of Tropical Insect Science, 34(4), pp.239-247.
Petermann, A.B., Reyna-Jeldes, M., Ortega, L., Coddou, C. and Yévenes, G.E., 2022. Roles of the unsaturated fatty acid docosahexaenoic acid in the central nervous system: Molecular and cellular insights. International journal of molecular sciences, 23(10), p.5390. https://doi.org/10.3390/ijms23105390.
Priyadharshini P, Swathiga G. 2021. Value Addition of Silkworm Pupae. Just Agriculture multidisciplinary e newsletter,2(1):1-8.
Qadri, S.F.I., 2015. Studies on the utilization of silkworm excreta and pupae meal in the diets of Broiler chicken (Doctoral dissertation). http://krishikosh.egranth.ac.in/handle/1/92443.
Rafiullah, I. and Khan, S., 2016. Replacement of soybean meal with silkworm meal (Bombyx mori ) in poultry ration.
Rao, P.U., 1994. Chemical composition and nutritional evaluation of spent silk worm pupae. Journal of Agricultural and Food Chemistry, 42(10), pp.2201-2203. https://doi.org/10.1021/jf00046a023.
Rashmi, K.M., Chandrasekharaiah, M., Soren, N.M., Prasad, K.S., David, C.G., Thirupathaiah, Y. and Shivaprasad, V., 2022. Defatted silkworm pupae meal as an alternative protein source for cattle. Tropical Animal Health and Production, 54(5), p.327.
Ratcliffe, N.A., Mello, C.B., Garcia, E.S., Butt, T.M. and Azambuja, P., 2011. Insect natural products and processes: new treatments for human disease. Insect biochemistry and molecular biology, 41(10), pp.747-769. https://doi.org/10.1016/j.ibmb.2011.05.007.
Razali, S.M., 2022. Physicochemical characteristics and microbiological quality of silkworm (Bombyx mori ) larval and pupae powder: comparative study. Sains Malaysiana, 51(2), pp.547-558. https:/doi.org/10.17576/jsm-2022-5102-18.
Rodrigues, S.L., Baldo, M.P., Machado, R.C., Forechi, L., Molina, M.D.C.B. and Mill, J.G., 2014. High potassium intake blunts the effect of elevated sodium intake on blood pressure levels. Journal of the American Society of Hypertension, 8(4), pp.232-238. https://doi.org/10.1016/j.jash.2014.01.001.
Ryu, S.P., 2014. Silkworm pupae powder ingestion increases fat metabolism in swim-trained rats. Journal of Exercise Nutrition & Biochemistry, 18(2), p.141. https://doi.org/10.5717/jenb.2014.18.2.141.
Sadat, A., Biswas, T., Cardoso, M.H., Mondal, R., Ghosh, A., Dam, P., Nesa, J., Chakraborty, J., Bhattacharjya, D., Franco, O.L. and Gangopadhyay, D., 2022. Silkworm pupae as a future food with nutritional and medicinal benefits. Current Opinion in Food Science, 44, p.100818. https://doi.org/10.1016/j.cofs.2022.100818.
Sahib, Q.S., Ahmed, H.A., Ganai, A.M., Farooq, J., Sheikh, G.G., Sheikh, I.U. and Beigh, Y.A., 2023. Evaluation of silkworm pupae meal based calf starter diet on the performance of crossbred cattle calves. Indian Journal of Animal Sciences, 93(9), pp.903-906. https://doi.org/10.56093/ijans.v93i9.129435.
Sericulture, O., Tulasi, G., and Viswanath, B. 2013. International Journal of Advancements in Research & Technology, 2(7),334-341.
Sharma, P., Bali, K., Sharma, A., Gupta, R.K. and Attri, K., 2022. Potential use of sericultural by products: A review. Pharma Innov, pp.1154-1158.
Sheikh, I.U., Banday, M.T., Baba, I.A., Adil, S., Nissa, S.S., Zaffer, B. and Bulbul, K.H., 2018. Utilization of silkworm pupae meal as an alternative source of protein in the diet of livestock and poultry: A review. J. Entomol. Zool. Stud, 6(4), pp.1010-1016.
Shukurova, Z.Y., Khalilov, Z.M. and Shukurlu, Y.H., 2021. Study of the organic and mineral composition of living pupae of the wild silkworm Saturnia pyri for use as food additives. International Journal of Industrial Entomology, 43(2). https://doi.org/10.7852/ijie.2021.43.2.52.
Swamy, H.V. and Devaraj, K.V., 1994. Nutrient utilization by common carp (Cyprinus carpio Linn) fed protein from leaf meal and silkworm pupae meal based diets. Indian Journal of Animal Nutrition, 11(2), pp.67-71. ISSN: 2231-6744.
Tomotake, H., Katagiri, M. and Yamato, M., 2010. Silkworm pupae (Bombyx mori ) are new sources of high quality protein and lipid. Journal of nutritional science and vitaminology, 56(6), pp.446-448. https://doi.org/10.3177/jnsv.56.446.
Torres, K.S., Sampaio, R.F., Ferreira, T.H.B. and Argondoña, E.J.S., 2022. Development of cookie enriched with silkworm pupae (Bombyx mori ). Journal of Food Measurement and Characterization, 16(2), pp.1540-1548.
Trivedy, K., Kumar, S.N., Mondal, M. and Bhat, C.A.K., 2007. Protein banding pattern and major amino acid component in de-oiled pupal powder of silkworm, Bombyx mori Linn. Journal of Entomology, 5(1), pp.10-16. https://doi.org/10.3923/je.2008.10.16.
Ullah, R., Khan S., Khan, N. A., Mobashar M., and Lohakare, J., 2017. Replacement of soybean meal with silkworm meal in the diets of white leghorn layers and effects on performance, apparent total tract digestibility, blood profile and egg quality. International Journal of Veterinary Health Science and Research. 5(7):200-207.
Valarie, H., G. Tran, S. Giger-Reverdin, and F. Lebas. 2015. Silkworm Pupae Meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO.
Venkatesh Kumar, R., Srivastava, D., Kumar, U., Kumar, M. and Singh, P., 2020. Bioprospecting of omega 3 fatty acid from silkworm pupal oil: from molecular mechanism to biological activities. Journal of Biologically Active Products from Nature, 10(6), pp.495-506. https://doi.org/10.1080/22311866.2020.1862704.
Venkatesh, B., Mukherji, A.P., Mukhopadhyay, P.K. and Dehadrai, P.V., 1986. Growth and metabolism of the catfish Clarias batrachus (Linn.) fed with different experimental diets. Proceedings: Animal Sciences, 95(4), pp.457-462.
Wang, W., Xu, L., Zou, Y., Pang, D., Shi, W., Mu, L., Li, E., Lan, D., Wang, Y. and Liao, S., 2020. Comprehensive identification of principal lipid classes and tocochromanols in silkworm (Antheraea pernyi and Bombyx mori ) pupae oils. European Journal of Lipid Science and Technology, 122(2), p.1900280. https://doi.org/10.1002/ejlt.201900280.
Wang, Y.P., Liu, J., Wu, Y.M., Liu, L.E., Lv, Q.J. and Wu, Y.J., 2009. Analysis of nutrition composition on silkworm pupa. Journal of Zhengzhou University (Medical Sciences), 44(3), pp.638-641.
Watanabe, T., Takeuchi, T., Satoh, S. and Kiron, V., 1996. Digestible crude protein contents in various feedstuffs determined with four freshwater fish species. Fisheries Science, 62(2), pp.278-282. https://doi.org/10.2331/fishsci.62.278.
Wu, X., He, K., Velickovic, T.C. and Liu, Z., 2021. Nutritional, functional, and allergenic properties of silkworm pupae. Food Science & Nutrition, 9(8), pp.4655-4665. https://doi.org/10.1002/fsn3.2428.
Yang, Y., Tang, L., Tong, L. and Liu, H., 2009. Silkworms culture as a source of protein for humans in space. Advances in Space Research, 43(8), pp.1236-1242. https://doi.org/10.1016/j.asr.2008.12.009.
Zhang, Y., Wang, J., Zhu, Z., Li, X., Sun, S., Wang, W. and Sadiq, F.A., 2021. Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates. European Food Research and Technology, 247(2), pp.343-352.
Zhou, J. and Han, D., 2006. Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi in China. Journal of Food Composition and Analysis, 19(8), pp.850-853. https://doi.org/10.1016/j.fca.200.04.008.
Zhou, J. and Han, D., 2006. Safety evaluation of protein of silkworm (Antheraea pernyi) pupae. Food and chemical toxicology, 44(7), pp.1123-1130. https://doi.org/10.1016/j.fct.2006.01.009
Zhou, Y., Zhou, S., Duan, H., Wang, J. and Yan, W., 2022. Silkworm pupae: a functional food with health benefits for humans. Foods, 11(11), p.1594. https://doi.org/10.3390/foods11111594
Zhu, L., Fan, Z.Q., Shi, X.Q., Wang, N., Bo, Y.Y. and Guo, H.E., 2020. A novel silkworm pupae carboxymethyl chitosan inhibits mouse L929 fibroblast proliferation. ScienceAsia, 46(1). http://dx.doi.org/10.2306/scienceasia1513-1874.2020.007
Zhu, L., Zou, D.Q., Fan, Z.Q., Wang, N., Bo, Y.Y., Zhang, Y.Q. and Guo, G., 2018. Properties of a novel carboxymethyl chitosan derived from silkworm pupa. Archives of Insect Biochemistry and Physiology, 99(2), p.e21499. https://doi.org/10.1002/arch.21499.![]() |
![]() |
![]() |
![]() |
![]() |