Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:8, August, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(8): 59-71
DOI: https://doi.org/10.20546/ijcmas.2025.1408.006


Medicinal and Aromatic Plants in Sustainable Agriculture: An Integrative Review of Bioactive Applications and Future Directions
Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, India
*Corresponding author
Abstract:

The projected global population growth to 9.7 billion by the year 2050 poses a critical challenge to global food security, requiring approximately a 70% increase in agricultural output. This demand is further intensified by the shrinking availability of cultivable land, escalating impacts of climate change, increasing incidence of plant pathogens and pests and the global shift towards eco-friendly and sustainable farming practices. In this context, there is an urgent need to explore innovative and natural strategies to enhance crop productivity without compromising environmental and consumer safety. One promising approach involves the application of bio-based agricultural inputs such as bio-fertilizers, bio-pesticides, and bio-stimulants derived from plant sources. Medicinal and aromatic plants (MAPs) have gained considerable attention due to their rich phytochemical profiles, including alkaloids, essential oils, glycosides, polyphenols, quinones, steroids, and terpenoids. These naturally occurring compounds are being explored for their potential to improve plant growth, enhance stress tolerance, and reduce dependence on synthetic agrochemicals. This review focuses on the role of MAP-derived plant extracts in promoting sustainable agriculture and summarizes current advancements, highlighting their prospective applications as green alternatives in crop management practices.


Keywords: Sustainable agriculture, Medicinal and aromatic plants, Bio- fertilizers, Bio- pesticides, Plant extracts, Eco-friendly farming


References:

Abd-ElGawad A.M., El Gendy, A.E.-N.G., Assaeed, A.M., Al-Rowaily, S.L., Alharthi, A.S., Mohamed, T.A., Nassar, M.I., Dewir, Y.H. and Elshamy, A.I. (2020). Phytotoxic effects of plant essential oils: a systematic review and structure–activity relationship based on chemometric analyses. Plants, 10:36. https://doi.org/10.3390/plants10010036

Ahmad Dar A., Sangwan, P.L. and Kumar, A. (2020). Chromatography: an important tool for drug discovery. Journal of Separation Science, 43: 105–119. https://doi.org/10.1002/jssc.201900656

Aioub A.A.A., Ghosh, S., Al-Farga, A., Khan, A.N., Bibi, R., Elwakeel, A.M., Nawaz, A., Sherif, N.T., Elmasry, S.A. and Ammar, E.E. (2024). Back to the origins: biopesticides as promising alternatives to conventional agrochemicals. European Journal of Plant Pathology, 169:697–713. https://doi.org/10.1007/s10658-024-02865-6

Alseekh S. and Fernie, A.R. (2023). Expanding our coverage: strategies to detect a greater range of metabolites. Curr. Opin. Plant Biol., 73: 102335. https://doi.org/10.1016/j.pbi.2022.102335

Balusamy S.R., Joshi, A.S., Perumalsamy, H., Mijakovic, I. and Singh, P. (2023). Advancing sustainable agriculture: a critical review of smart and eco-friendly nanomaterial applications. Journal of Nanobiotechnology, 21:372. https://doi.org/10.1186/s12951-023-02135-3

Bayda S., Adeel, M., Tuccinardi, T., Cordani, M. and Rizzolio, F. (2019). The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules, 25:112. https://doi.org/10.3390/molecules25010112

Bishop G.J. and Yokota, T. (2001). Plant steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol., 42: 114–120. https://doi.org/10.1093/pcp/pce018

Biswas S. and Das, R. (2024). Organic farming to mitigate biotic stresses under climate change scenario. Bull Natl Res Cent, 48:71. https://doi.org/10.1186/s42269-024-01226-x

Blando F., Calabriso, N., Berland, H., Maiorano, G., Gerardi, C., Carluccio, M. and Andersen, Ø. (2018). Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. Int J Mol Sci, 19:169. https://doi.org/10.3390/ijms19010169

Bolouri P., Salami, R., Kouhi, S., Kordi, M., Asgari Lajayer, B., Hadian, J. and Astatkie, T. (2022). Applications of essential oils and plant extracts in different industries. Molecules, 27: 8999. https://doi.org/10.3390/molecules27248999

Bratovcic A., Hikal, W.M., Said-Al Ahl, H.A.H., Tkachenko, K.G., Baeshen, R.S., Sabra, A.S. and Sany, H. (2021). Nanopesticides and nanofertilizers and agricultural development: scopes, advances and applications. Open Journal of Ecology, 11:301–316. https://doi.org/10.4236/oje.2021.114022

Castillo-Henriquez L., Alfaro-Aguilar, K., Ugalde-Alvarez, J., Vega-Fernandez, L., Montes De Oca-Vasquez, G. and Vega-Baudrit, J.R. (2020). Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials, 10:1763. https://doi.org/10.3390/nano10091763

Chaachouay N. and Zidane, L. (2024). Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates, 3(1): 184–207. https://doi.org/10.3390/ddc3010011

Chandler D., Bailey, A.S., Tatchell, G.M., Davidson, G., Greaves, J. and Grant, W.P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B, 366:1987–1998. https://doi.org/10.1098/rstb.2010.0390

Chen S.-L., Yu, H., Luo, H.-M., Wu, Q., Li, C.-F. and Steinmetz, A. (2016). Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine, 11: 37. https://doi.org/10.1186/s13020-016-0108-7

Chrysargyris A., Petrovic, J.D., Tomou, E.M., Kyriakou, K., Xylia, P., Kotsoni, A., Gkretsi, V., Miltiadous, P., Skaltsa, H., Sokovi?, M.D. and Tzortzakis, N. (2024). Phytochemical profiles and biological activities of plant extracts from aromatic plants cultivated in Cyprus. Biology, 13: 45. https://doi.org/10.3390/biology13010045

Dash S. and Pattnaik S. (2025). Hydro-distillation of essential oil of Mangifera indica L. flowers and its GC-MS analysis. Int. J. Curr. Microbiol. App. Sci., 14(7): 115–121. https://doi.org/10.20546/ijcmas.2025.1407.015

Dash S. and Pattnaik, S. (2024). Wild mango flower essential oil (WMFEO) as source of antibacterial herbal principles: A review. Zeichen J., 10(1): 85–101. https://doi.org/15.10089.ZJ.2024.V10I01.285311.3217  

Dey P., Kundu, A., Kumar, A., Gupta, M., Lee, B.M., Bhakta, T., Dash, S. and Kim, H.S. (2020). Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent Advances in Natural Products Analysis, Elsevier, Amsterdam. pp. 505–567. https://doi.org/10.1016/B978-0-12-816455-6.00015-9

Dhifi W., Bellili S., Jazi, S., Bahloul, N. and Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: a critical review. Medicines, 3(4): 25. https://doi.org/10.3390/medicines3040025

Du Y., Fu X., Chu Y., Wu, P., Liu, Y., Ma, L., Tian, H. and Zhu, B. (2022). Biosynthesis and the roles of plant sterols in development and stress responses. Int. J. Mol. Sci., 23: 2332. https://doi.org/10.3390/ijms23042332

Fan M., Yuan S., Li, L., Zheng, J., Zhao D., Wang C., Wang H., Liu X. and Liu J. (2023). Application of terpenoid compounds in food and pharmaceutical products. Fermentation, 9: 119. https://doi.org/10.3390/fermentation9020119

Fenn M.A. and Giovannoni J.J. (2021). Phytohormones in fruit development and maturation. Plant J. Cell Mol. Biol., 105: 446–458. https://doi.org/10.1111/tpj.15112

Fierascu R.C., Fierascu I., Baroi A.M. and Ortan A. (2021). Selected aspects related to medicinal and aromatic plants as alternative sources of bioactive compounds. International Journal of Molecular Sciences, 22: 1521. https://doi.org/10.3390/ijms22041521

Gallie D.R. (2013). L-Ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica, 2013:795964. https://doi.org/10.1155/2013/795964

Gao L., Yuan H., Xu, E. and Liu J. (2020). Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics. Scientific Reports, 10:1790. https://doi.org/10.1038/s41598-020-58599-y

Ghosh K., Chatterjee, B. Jayaprasad A.G. and Kanade S.R. (2018). The persistent organochlorine pesticide endosulfan modulates multiple epigenetic regulators with oncogenic potential in MCF-7 cells. Science of the Total Environment, 624:1612–1622. https://doi.org/10.1016/j.scitotenv.2017.10.058

Godlewska K., Pacyga, P., Michalak I., Biesiada A., Szumny A., Pachura N. and Piszcz U. (2020). Field-scale evaluation of botanical extracts effect on the yield, chemical composition and antioxidant activity of celeriac (Apium graveolens L. var. rapaceum). Molecules, 25: 4212. https://doi.org/10.3390/molecules25184212

Godlewska K., Pacyga, P., Michalak I., Biesiada, A., Szumny A., Pachura N. and Piszcz, U. (2021). Effect of botanical extracts on the growth and nutritional quality of field-grown white head cabbage (Brassica oleracea var. capitata). Molecules, 26: 1992. https://doi.org/10.3390/molecules26071992

Godlewska K., Ronga, D. and Michalak I. (2021). Plant extracts—importance in sustainable agriculture. Italian Journal of Agronomy, 16(1): 1851. https://doi.org/10.4081/ija.2021.1851

González-Macedo M., Cabirol N. and Rojas-Oropeza M. (2023). Assessment of the ancestral use of garlic (Allium sativum) and nettle (Urtica dioica) as botanical insecticides in the protection of mesquite (Prosopis laevigata) seeds against bruchins. Journal of Plant Protection Research, 63(1): 103–113. https://doi.org/10.24425/jppr.2021.137023

Hasan M., Ahmad-Hamdani M.S., Rosli A.M. and Hamdan H. (2021). Bioherbicides: an eco-friendly tool for sustainable weed management. Plants, 10:1212. https://doi.org/10.3390/plants10061212

Hasanuzzaman M., Nahar K., Anee T.I. and Fujita M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants, 23:249–268. https://doi.org/10.1007/s12298-017-0422-2

Heinrich M., Mah, J. and Amirkia V. (2021). Alkaloids used as medicines: structural phytochemistry meets biodiversity—an update and forward look. Molecules, 26:1836. https://doi.org/10.3390/molecules26071836

Husain F.M., Ahmad, I., Al-thubiani, A.S., Abulreesh, H.H., AlHazza, I.M. and Aqil, F. (2017). Leaf extracts of Mangifera indica L. inhibit quorum sensing—regulated production of virulence factors and biofilm in test bacteria. Frontiers in Microbiology, 8:727. https://doi.org/10.3389/fmicb.2017.00727

Jacquet F., Jeuffroy M.-H., Jouan, J., Le Cadre, E., Litrico, I., Malausa, T., Reboud, X. and Huyghe, C. (2022). Pesticide-free agriculture as a new paradigm for research. Agronomy for Sustainable Development, 42:8. https://doi.org/10.1007/s13593-021-00742-8

Kamboj A., Kiran R. and Sandhir R. (2006). Carbofuran-induced neurochemical and neurobehavioral alterations in rats: attenuation by N-acetylcysteine. Experimental Brain Research, 170:567–575. https://doi.org/10.1007/s00221-005-0241-5

Khamare Y., Chen J. and Marble S.C. (2022). Allelopathy and its application as a weed management tool: A review. Frontiers in Plant Science, 13:1034649. https://doi.org/10.3389/fpls.2022.1034649

Khan S., Zahoor M., Sher Khan R., Ikram M. and Islam N.U. (2023). The impact of silver nanoparticles on the growth of plants: the agriculture applications. Heliyon, 9: e16928. https://doi.org/10.1016/j.heliyon.2023.e16928

Kisiriko M., Anastasiadi, M. Terry, L.A. Yasri, A., Beale M.H. and Ward, J.L. (2021). Phenolics from medicinal and aromatic plants: characterisation and potential as biostimulants and bioprotectants. Molecules, 26: 6343. https://doi.org/10.3390/molecules26216343

Kubiak A., Wolna-Maruwka A., Niewiadomska A. and Pilarska A.A. (2022). The problem of weed infestation of agricultural plantations vs. the assumptions of the European biodiversity strategy. Agronomy, 12:1808. https://doi.org/10.3390/agronomy12081808

Kytidou K., Artola M., Overkleeft, H.S. and Aerts, J.M.F.G. (2020). Plant glycosides and glycosidases: a treasure-trove for therapeutics. Front. Plant Sci., 11: 357. https://doi.org/10.3389/fpls.2020.00357

Leopoldini M., Russo N., Chiodo S. and Toscano, M. (2006). Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem, 54:6343–6351. https://doi.org/10.1021/jf060986h

Lichman B.R. (2021). The scaffold-forming steps of plant alkaloid biosynthesis. Nat. Prod. Rep., 38: 103–129. https://doi.org/10.1039/D0NP00031K

Mabasa X.E., Mathomu L.M., Madala N.E., Musie E.M. and Sigidi M.T. (2021). Molecular spectroscopic (FTIR and UV-Vis) and hyphenated chromatographic (UHPLC-qTOF-MS) analysis and in vitro bioactivities of the Momordica balsamina leaf extract. Biochemistry Research International, 2021: 1–12. https://doi.org/10.1155/2021/2854217

Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E. and Kalinina, N.O. (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6(1): 35–44. https://doi.org/10.32607/20758251

Malhotra A., Rawat A., Prakash O., Kumar R., Srivastava R.M. and Kumar S. (2023). Chemical composition and pesticide activity of essential oils from Artemisia annua L. harvested in the rainy and winter seasons. Biochemical Systematics and Ecology, 107:104601. https://doi.org/10.1016/j.bse.2023.104601

Meng J., Li, M., Zheng Z., Sun Z., Yang S., Ouyang G., Wang Z. and Zhou X. (2024). Application of natural-products repurposing strategy to discover novel FtsZ inhibitors: bactericidal evaluation and the structure-activity relationship of sanguinarine and its analogs. Pesticide Biochemistry and Physiology, 203:106016. https://doi.org/10.1016/j.pestbp.2024.106016

Mohd Ghazi R., Nik Yusoff N.R., Abdul Halim N.S., Wahab, I.R.A., Ab Latif, N., Hasmoni, S.H., Ahmad Zaini, M.A. and Zakaria, Z.A. (2023). Health effects of herbicides and its current removal strategies. Bioengineered, 14:2259526. https://doi.org/10.1080/21655979.2023.2259526

Molotoks A., Stehfest E., Doelman J., Albanito F., Fitton, N., Dawson, T.P. and Smith, P. (2018). Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology, 24: 5895–5908. https://doi.org/10.1111/gcb.14459

Monks T. and Jones D. (2002). The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers. Curr. Drug Metab., 3: 425–438. https://doi.org/10.2174/1389200023337388

Ninkuu V., Zhang, L., Yan J., Fu Z., Yang T. and Zeng H. (2021). Biochemistry of terpenes and recent advances in plant protection. Int. J. Mol. Sci., 22: 5710. https://doi.org/10.3390/ijms22115710

Nowicka B., Trela-Makowej, A. Latowski, D. Strzalka, K. and Szyma?ska R. (2021). Antioxidant and signaling role of plastid-derived isoprenoid quinones and chromanols. Int. J. Mol. Sci., 22: 2950. https://doi.org/10.3390/ijms22062950

Ortiz, A., & Sansinenea, E. (2023). Phenylpropanoid derivatives and their role in plants’ health and as antimicrobials. Current Microbiology, 80(12), 380. https://doi.org/10.1007/s00284-023-03502-x

Ogunnupebi T.A., Oluyori A.P., Dada A.O., Oladeji O.S., Inyinbor, A.A. and Egharevba, G.O. (2020). Promising natural products in crop protection and food preservation: basis, advances, and future prospects. International Journal of Agronomy, 2020: 1–28. https://doi.org/10.1155/2020/8840046

Panuccio M.R., Chaabani S. Roula R. and Muscolo A. (2018). Bio-priming mitigates detrimental effects of salinity on maize improving antioxidant defense and preserving photosynthetic efficiency. Plant Physiology and Biochemistry, 132: 465–474. https://doi.org/10.1016/j.plaphy.2018.09.033

Pergola M., De Falco, E. Belliggiano A. and Ievoli C. (2024). The most relevant socio-economic aspects of medicinal and aromatic plants through a literature review. Agriculture, 14: 405. https://doi.org/10.3390/agriculture14030405

Pingali P.L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109: 12302–12308. https://doi.org/10.1073/pnas.0912953109

Ranade S. and David S.B. (1985). Quinones as plant growth regulators. Plant Growth Regul., 3: 3–13. https://doi.org/10.1007/BF00123541

Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M. and Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10:277. https://doi.org/10.3390/antiox10020277

Singh H.P., Batish D.R., Kaur S., Arora K. and Kohli, R.K. (2006). Pinene inhibits growth and induces oxidative stress in roots. Annals of Botany, 98:1261–1269. https://doi.org/10.1093/aob/mcl213

Souri M.K. and Bakhtiarizade M. (2019). Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Scientia Horticulturae, 243: 472–476. https://doi.org/10.1016/j.scienta.2018.08.056

Suna S., Tamer C.E. and Özcan-Sinir G. (2019). Trends and possibilities of the usage of medicinal herbal extracts in beverage production. In: Preedy, V.R. (Ed.), Natural Beverages. Elsevier, Amsterdam, pp. 361–398. http://dx.doi.org/10.1016/B978-0-12-816689-5.00013-4

Tavares W.R., Barreto M.D.C. and Seca A.M.L. (2021). Aqueous and ethanolic plant extracts as bio-insecticides—establishing a bridge between raw scientific data and practical reality. Plants, 10:920. https://doi.org/10.3390/plants10050920

Teoh E.S. (2015). Secondary metabolites of plants. In: Medicinal Orchids of Asia, Springer International Publishing, Cham. pp. 59–73. https://doi.org/10.1007/978-3-319-24274-3_5

Vikram A., Jayaprakasha G.K., Jesudhasan P.R., Pillai, S.D. and Patil, B.S. (2010). Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. Journal of Applied Microbiology, 109:515–527. https://doi.org/10.1111/j.1365-2672.2010.04677.x

Vriet C., Russinova E. and Reuzeau C. (2012). Boosting crop yields with plant steroids. Plant Cell, 24: 842–857. https://doi.org/10.1105/tpc.111.094912

Waller G.R. and Nowacki E.K. (1978). The role of alkaloids in plants. In: Alkaloid Biology and Metabolism in Plants, Springer, Boston. pp. 143–181. https://doi.org/10.1007/978-1-4684-0772-3_5

Zhu C., Wu S., Sun, T. Zhou, Z., Hu Z. and Yu J. (2021). Rosmarinic acid delays tomato fruit ripening by regulating ripening-associated traits. Antioxidants, 10:1821. https://doi.org/10.3390/antiox10111821

Zulfiqar F., Navarro, M. Ashraf, M. Akram, N.A. and Munne-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Science, 289:110270. https://doi.org/10.1016/j.plantsci.2019.110270

Download this article as Download

How to cite this article:

Snigdharani Dash. 2025. Medicinal and Aromatic Plants in Sustainable Agriculture: An Integrative Review of Bioactive Applications and Future Directions.Int.J.Curr.Microbiol.App.Sci. 14(8): 59-71. doi: https://doi.org/10.20546/ijcmas.2025.1408.006
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations