![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Klebsiella species are opportunistic pathogens responsible for a wide range of hospital and community-acquired infections, including pneumonia, urinary tract infections, septicemia, and liver abscesses. The global emergence of multidrug-resistant (MDR) Klebsiella, particularly those producing extended-spectrum β-lactamases (ESBLs), poses a significant public health challenge. ESBLs hydrolyze β-lactam antibiotics, rendering extended-spectrum cephalosporins and monobactams ineffective. The widespread use and misuse of antibiotics in human medicine and agriculture have accelerated the development and dissemination of resistance, facilitated by horizontal gene transfer through plasmids, transposons, and integrons. Among ESBLs, TEM, SHV, and CTX-M types are most prevalent, with CTX-M-15 emerging as a dominant variant, especially in Asia, including India. Klebsiella species are the primary reservoirs of ESBL genes and are frequently implicated in nosocomial outbreaks. Accurate detection and molecular characterization of these strains are essential for epidemiological surveillance and outbreak control. Molecular typing techniques such as SDS-PAGE and RAPD are valuable tools for studying clonal relationships and resistance gene dissemination. Despite the high prevalence of ESBL-producing Klebsiella in India, limited data exist for regions of Maharashtra. This study was undertaken to determine the phenotypic prevalence and molecular epidemiology of ESBL-producing Klebsiella species in these regions, establishing a baseline for resistance surveillance and control strategies.
Abraham, E. P. & Chain, E. (1940). An enzyme from bacteria able to destroy penicillin. Nature 146: 837. https://doi.org/10.1038/146837a0
Alexander, C. & Rietschel, E. T. (2001). Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7: 167-202. https://doi.org/10.1177/09680519010070030101
Ambler, R. P., Coulson, A. F., Frere, J. M., Ghuysen, J. M., Joris, B., Forsman, M., et al., (1991). A standard numbering scheme for the class A β-lactamases.Biochem J 276: 269-270. https://doi.org/10.1042/bj2760269
Amyes, S. G. B. (2010). Antibacterial Chemotherapy. 1st Ed. Oxford university press. Oxford, UK.
Arakawa, Y., Ohta, M., Wacharotayankun, R., Mori, M., Kido, N., Ito, H., et al., (1991). Biosynthesis of Klebsiella K2 capsular polysaccharide in E. coli HB101requires the functions of rmpA and the chromosomal cps gene cluster of the virulentstrain K. pneumoniae Chedid (O1:K2). Infect Immun 59: 2043-2050. https://doi.org/10.1128/iai.59.6.2043-2050.1991
Bell, J. M., Chitsaz, M., Turnidge, J.D., Barton, M., Walters, L.J. & Jones, RN, (2007). Prevalence and Significance of a Negative Extended-Spectrum β-Lactamase (ESBL) Confirmation Test Result after a Positive ESBL Screening Test Result for Isolates of Escherichia coli and Klebsiella pneumoniae: Results from the SENTRY Asia-Pacific Surveillance Program. J Cli Microbiol, 45(50): 1478-1482. https://doi.org/10.1128/JCM.02470-06
Bennett, J. W. & Chung, K. T. (2001). Alexander Fleming and the discovery of penicillin. Adv Appl Microbiol 49: 163-184. https://doi.org/10.1016/s0065-2164(01)49013-7
Bleich, A., Kirsch, P., Sahly, H., Fahey, J., Smoczek, A., Hedrich, H. J. & Sundberg, J. P. (2008). K. oxytoca: opportunistic infections in laboratory rodents.LabAnim 42: 369-375. https://doi.org/10.1258/la.2007.06026e
Bonnet, R. (2004). Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48: 1-14. https://doi.org/10.1128/aac.48.1.1-14.2004
Bortz, D., Jackson, T., Taylor, K., Thompson, A. & Younger J. (2008). Klebsiella pneumoniae flocculation dynamics. Bull Math Biol 70: 745-68. https://doi.org/10.1007/s11538-007-9277-y
Bradford, P. A. (2001). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14: 933-951. https://doi.org/10.1128/cmr.14.4.933-951.2001
Brisse, S., Grimont, F. & Grimont, P. (2006). The Genus Klebsiella. Prokaryotes 6: 159-196. https://doi.org/10.1007/0-387-30746-X_8
Brisse, S., Issenhuth-Jeanjean, S. & Grimont, P. A. (2004). Molecular serotyping of Klebsiella species isolates by restriction of the amplified capsular antigen gene cluster. J Clin Microbiol 42: 3388-3398. https://doi.org/10.1128/jcm.42.8.3388-3398.2004
Brooks, G., Butel, S., Morse, S. (2007). Enteric Gram negative rods (Enterobacteriaceae). In: Jawetz, Melnick & Adelberg’s Medical Microbiology. 24th Ed, McGraw-Hill Medical. New York, USA.
Bush, K. & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54: 969-976. https://doi.org/10.1128/aac.01009-09
Chiang, CS, Liaw, GJ, 2005, Presence of βlactamase Gene TEM-1 DNA Sequence in Commercial Taq DNA Polymerase, Journal of clinical Microbiology, vol. 43, no. 1, 530-531. https://doi.org/10.1128/JCM.43.1.530-531.2005
Chuang, Y. P., Fang, C. T., Lai, S. Y., Chang, S. C. & Wang, J. T. (2006). Genetic determinants of capsular serotype K1 of K. pneumoniae causing primary pyogenic liver abscess. J Infect Dis 193: 645-654. https://doi.org/10.1086/499968
CLSI Performance Standards for Antimicrobial Susceptibility Testing, (2010). Twentieth informational supplement, CLSI document M-100-S-20, Waype PA: Clinical and laboratory standard institute, 2010.
Costas, M., Holmes, B. & Sloss, L. L. (1990). Comparison of SDS-PAGE protein patterns with other typing methods for investigating the epidemiology of 'Klebsiella aerogenes'. Epidemiol Infect 104: 455-465. https://doi.org/10.1017/s0950268800047464
Datta, N. & Kontomichalou, P. (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208: 239-241. https://doi.org/10.1038/208239a0
Drancourt, M., Bollet, C., Carta, A. & Rousselier, P. (2001). Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultellagen. nov., with description of R. ornithinolytica comb. nov., R. terrigenacomb. nov. and R.planticolacomb. nov. Int J Syst Evol Microbiol 51: 925-932. https://doi.org/10.1099/00207713-51-3-925
Drawz, S. M. & Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23: 160-201. https://doi.org/10.1128/cmr.00037-09
Duman, M., Abacioglu, H., Karaman, M. & Ozkan, H. (2005). β-lactam antibiotic resistance in aerobic commensal fecal flora of new born. Pediatr Int 47:267-273.
Fang, F. C., Sandler, N. & Libby, S. J. (2005). Liver abscess caused by magA+ K. pneumoniae in North America. J Clin Microbiol 43: 991-992.
Farkosh, M. S. (2007). Extended-Spectrum betalactamase Producing Gram Negative Bacilli. http://nosoweb.org/infectious diseases/esbl.htm
Friedländer, C. (1882). Über die Schizomyceten bei der acuten fibriösen Pneumonie. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medicin, 87(2), 319–324. https://doi.org/10.1007/BF01934943
Friedman, C., Callery, S., Jeanes, A., Piaskowski, P. & Scott, L. (2005). Best Infection Control Practices for Patients with Extended Spectrum Beta Lactamase Enterobacteriacae. International Infection Control Council.
Fung, C. P., Chang, F. Y., Lee, S. C., Hu, B. S., Kuo, B. I., Liu, C. Y., et al., (2002). A global emerging disease of K. pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50: 420-424. https://doi.org/10.1136/gut.50.3.420
Ghuysen, J. M. (1991). Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45: 37-67. https://doi.org/10.1146/annurev.mi.45.100191.000345
Gniadkowski, M. (2008). Evolution of extended-spectrum β-lactamases by mutation. Clin Microbiol Infect 14: 11-32. https://doi.org/10.1111/j.1469-0691.2007.01854.x
Goldsworthy, P. D. & McFarlane, A. C. (2002). Howard Florey, Alexander Fleming and the fairy tale of penicillin. Med J 176: 176-178. https://doi.org/10.5694/j.1326-5377.2002.tb04349.x
Gori, A., Espinasse, F., Deplano, A., Nonhoff, C., Nicolas, M. H., & Struelens A. J. (1996). Comparision of pulse field gel electrophoresis and randomly amplified DNA polymorphism analysis for typing extended spectrum β- lactamase producing Klebsiella pneumoniae. J Clin Microbiol 34 (10): 2448-2453. https://doi.org/10.1128/jcm.34.10.2448-2453.1996
Hall, B. G. & Barlow, M. (2004). Evolution of the serine β-lactamases: past, presentand future. Drug Resist Updat 7: 111-123. https://doi.org/10.1016/j.drup.2004.02.003
Hansen, D. S., Aucken, H. M., Abiola, T. & Podschun, R. (2004). Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 42: 3665-3669. https://doi.org/10.1128/jcm.42.8.3665-3669.2004
Hansen, D. S., Skov, R., Benedi, J. V., Sperling, V. & Kolmos, H. J. (2002). Klebsiella typing: pulsed-field gel electrophoresis (PFGE) in comparison with O:K-serotyping.Clin Microbiol Infect 8: 397-404. https://doi.org/10.1046/j.1469-0691.2002.00411.x
Hawkey, PM, 2008, Prevalence and clonality of extended-spectrum β-lactamases in Asia. Clinical Microbiology and Infection(14):159-165. https://doi.org/10.1111/j.1469-0691.2007.01855.x
Heritier, C., Poirel, L., Fournier, P. E., Claverie, J. M., Raoult, D. & Nordmann, P. (2005). Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother 49: 4174-4179. https://doi.org/10.1128/AAC.49.10.4174-4179.2005
Hernandez-Alles, S., Alberti, S., Alvarez, D., Dosmenech-sanchez, A., Martinez, L., Gil, J., Thomas, M. & Benedi, J. (1999). Porin expression in clinical isolates of Klebsiella pneumoniae. Microbial 145: 673-679. http://dx.doi.org/10.1099/13500872-145-3-673
Ishii, Y., Galleni, M., Ma, L., Frere, J. M. & Yamaguchi, K. (2007). Biochemical characterisation of the CTX-M-14 β-lactamase. Int J Antimicrob Agents 29: 159- 164. https://doi.org/10.1016/j.ijantimicag.2006.09.005
Jacoby, G. A., & Medeiros, A. A. (1991). More extended-spectrum beta-lactamases.Antimicrob Agents Chemother 35(9):1644-1649.
Jain, A. & Mondal, R. (2007). Prevalance and antimicrobial resistance pattern of extended spectrum beta lactamase producing Klebsiella spp. from cases of neonatal septicemia. Ind J Med Microbiol 125: 89-94.
Kliebe, C., Nies, B. A., Meyer, J. F., Tolxdorff-Neutzling, R. M. & Wiedemann, B. (1985). Evolution of plasmid-coded resistance to broad-spectrum cephalosporins.Antimicrob Agents Chemother 28: 302-307. https://doi.org/10.1128/aac.28.2.302
Knothe, H., Shah, P., Krcmery, V., Antal, M. & Mitsuhashi, S. (1983). Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime inclinical isolates of K. pneumoniae and Serratia marcescens. Infection 11: 315-317. https://doi.org/10.1007/bf01641355
Kovtunovych, G., Lytvynenko, T., Negrutska, V., Lar, O., Brisse, S. & Kozyrovska, N. (2003). Identification of K. oxytoca using a specific PCR assay targeting the polygalacturonase pehXgene. Res Microbiol 154: 587-592. https://doi.org/10.1016/s0923-2508(03)00148-7
Lee, Y. H., Cho, B., Bae, I. K., Chang, C. L. & Jeong, S. H. (2006). K. pneumoniae strains carrying the chromosomal SHV-11 β-lactamase gene produce the plasmid-mediated SHV-12 extended-spectrum β-lactamase more frequently than those carrying the chromosomal SHV-1 β-lactamase gene. J Antimicrob Chemother57: 1259-1261. https://doi.org/10.1093/jac/dkl115
Leflon-Guibout, V., Heym, B. & Nicolas-Chanoine, M. (2000). Updated sequence information and proposed nomenclature for bla(TEM) genes and their promoters. Antimicrob Agents Chemother 44: 3232-3234. https://doi.org/10.1128/aac.44.11.3232-3234.2000
Lin, J. C., Chang, F. Y., Fung, C. P., Xu, J. Z., Cheng, H. P., Wang, J. J., Huang, L. Y. & Siu, L. K. (2004). High prevalence of phagocytic-resistant capsular serotypes of K. pneumoniae in liver abscess. Microbes Infect 6: 1191-1198. https://doi.org/10.1016/j.micinf.2004.06.003
Livermore, D. M. & Woodford, N. (2006). The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14: 413-420. https://doi.org/10.1016/j.tim.2006.07.008
Livermore, D. M. (1995). β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8: 557-584. https://doi.org/10.1128/cmr.8.4.557
Milch, H. & Deak, S. (1964). Studies on Klebsiella infections by phage detection and phage typing. Acta Microbiol Acad Sci Hung 11: 251-261.
Miriagou, V., Carattoli, A., Tzelepi, E., Villa, L. & Tzouvelekis, L. S. (2005). IS26-associated In4-type integrons forming multiresistance loci in enterobacterial plasmids. Antimicrob Agents Chemother 49: 3541-3543. https://doi.org/10.1128/aac.49.8.3541-3543.2005
Nassif, X., Sansonetti, P. J., & Corthésy-Theulaz, I. (1986). Role of siderophores in the pathogenicity of Klebsiella pneumoniae: Aerobactin production enhances virulence in experimental infections. Infection and Immunity, 54(3), 603–608. https://doi.org/10.1128/iai.54.3.603-608.1986
Paterson, D. L. (2006). Resistance in gram-negative bacteria: Enterobacteriaceae. American Journal of Infection Control, 34(5, Supplement), S20–S28. https://doi.org/10.1016/j.ajic.2006.05.238
Paterson, D. & Bonomo, R. (2005). Extended spectrum beta lactamase: A clinical update. Cli Microbiol Rev 18(4): 657-86. Pub Med: 16223952. https://doi.org/10.1128/cmr.18.4.657-686.2005
Peirano, G. & Pitout, J. D. D. (2010). Molecular epidemiology of Escherichia coli producing CTX-M β-Lactamases : worldwide emergence of clone ST131 025:H4. IntJ Antimicrobial Agents35: 316-321. https://doi.org/10.1016/j.ijantimicag.2009.11.003
Perez, F., Endimiani, A., Hujer, K. M. & Bonomo, R. A. (2007).The continuing challenge ESBLs. Curr Opinion Pharmacol 7(5):459-469. https://doi.org/10.1016/j.coph.2007.08.003
Pitout, J. D. D. & Laupland, K. B. (2008). Extended Spectrum β-Lactamase producing Enterobacteriaceae an emerging public health concern. Lancet Infect Dis 8: 159-166. https://doi.org/10.1016/s1473-3099(08)70041-0
Pitout, J. D., Campbell, L., Church, D. L., Wang, P. W., Guttman, D. S. & Gregson, D. B. (2009). Using a commercial DiversiLab semiautomated repetitive sequence-based PCR typing technique for identification of E. coli clone ST131producing CTX-M-15. J Clin Microbiol 47: 1212-1215. https://doi.org/10.1128/jcm.02265-08
Pitton, J. S. (1972). Mechanisms of bacterial resistance to antibiotics. ErgebPhysiol 65: 15-93. https://doi.org/10.1007/3-540-05814-1_2
Poduschum, R. & Ullman, U. (1998). Klebsiella species as nosocomial pathogens: Epidemiology, Taxonomy, Typing methods, and pathogenicity factors. Cli Microbiol Rev 11:589 – 603. https://doi.org/10.1128/cmr.11.4.589
Poirel, L., Naas, T. & Nordmann, P. (2008). Genetic support of extended-spectrum β-lactamases. Clin Microbiol Infect 14: 75-81. https://doi.org/10.1111/j.1469-0691.2007.01865.x
Poole, K. (2004). Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10: 12-26. https://doi.org/10.1111/j.1469-0691.2004.00763.x
Rahman, M. M., Haque, J.A., Hossain, M. A., Sultana, R., Islam, F., AHM. & Islam, S. (2004). Prevalence of extended spectrum beta_lactamase-producing E. coli and Klebsiella pneumoniae in an urban hospital in Dhaka Bangladesh. Int J Antimicrob Agents. 24(5): 508-510. https://doi.org/10.1016/j.ijantimicag.2004.05.007
Riley L. W. (2004). Molecular epidemiology of infectious disease- principle and practices. Washington D. C. ASM Press.
Sabate, M., Miro, E., Navarro, F., Verges, C., Aliaga, R., Mirelis, B. & Prats, G. (2002). β-lactamases involved in resistance to broad-spectrum cephalosporins in E.coli and Klebsiella spp. clinical isolates collected between 1994 and 1996, in Barcelona, Spain. J Antimicrob Chemother 49: 989-997. https://doi.org/10.1093/jac/dkf057
Schelenz, S., Bramham, K. & Goldsmith, D. (2007). Septic arthritis due to extended spectrum beta lactamase producing K. pneumoniae. Joint Bone Spine 74: 275-278. https://doi.org/10.1016/j.jbspin.2006.08.007
Schwaber, M. J., Navon-Venezia, S., Kaye, K. S., Ben-Ami, R., Schwartz, D. & Carmeli, Y. (2006). Clinical and economic impact of bacteremia with extended spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother50: 1257-1262. https://doi.org/10.1128/aac.50.4.1257-1262.2006
Sharma, J., Sharma, M., & Roy, P. (2010). Detection of TEM and SHV genes in E. coli and Klebsiella pneumoniae isolates in a tertiary care hospital from India. Ind J Med Res132: 332-336.
Smet, A., Martel, A., Persoons, D., Dewulf, J., Heyndrickx, M., Catry, B., Herman, L., Haesebrouck, F. & Butaye, P. (2008). Diversity of extended-spectrum β-lactamases and class C β-lactamases among cloacal E. coli Isolates in Belgian broiler farms. Antimicrob Agents Chemother 52: 1238-1243. https://doi.org/10.1128/aac.01285-07
Spratt, B. G. (1994). Resistance to antibiotics mediated by target al.,terations. Science 264: 388-393. https://doi.org/10.1126/science.8153626
Strampfer, M. J., Schoch, P. E. & Cunha, B. A. (1987). Cerebral abscess cause by Klebsiella ozaenae. J Clin Microbiol 25: 1553-1554. https://doi.org/10.1128/jcm.25.8.1553-1554.1987
Tribuddharat, C., Srifuengfung, S. & Chiangjong, W. (2008). Preliminary study of randomly amplified polymorphic DNA analysis for typing extended spectrum beta- lactamase producing Klebsiella pneumoniae. J Med Assoc Thai 91(4): 527-532.
Vimont, S., Mnif, B., Fevre, C. & Brisse, S. (2008). Comparison of PFGE and multilocus sequence typing for analysis of K. pneumoniae isolates. J Med Microbiol 57: 1308-1310. https://doi.org/10.1099/jmm.0.2008/003798-0
Wilke, M. S., Lovering, A. L. & Strynadka, N. C. (2005). β-lactam antibiotic resistance: a current structural perspective. CurrOpin Microbiol 8: 525-533. https://doi.org/10.1016/j.mib.2005.08.016
Yusha’u, M. M., Kumurya, A. S. & Suleiman, L. (2010). Prevalence of Extended spectrum β-lactamases among Enterobacteriaceae in Murtala Mohammed specialist hospital, Kano, N. J Pure Appl Sci 3(1): 169- 172.![]() |
![]() |
![]() |
![]() |
![]() |