Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:8, August, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(8): 44-58
DOI: https://doi.org/10.20546/ijcmas.2025.1408.005


Extended Spectrum β-lactamase Producing Klebsiella an Emerging Threat to Human Health, Epidemiology and Detection Methods: A Review
M. G. Thosar1 and Pravin Vasantrao Gadakh2*
1Aadarsh Art, Science and Commerce College, Dhamangaon Railway, India
2NKSPT’s Arts, Science and Commerce College, Badnapur, India
*Corresponding author
Abstract:

Klebsiella species are opportunistic pathogens responsible for a wide range of hospital and community-acquired infections, including pneumonia, urinary tract infections, septicemia, and liver abscesses. The global emergence of multidrug-resistant (MDR) Klebsiella, particularly those producing extended-spectrum β-lactamases (ESBLs), poses a significant public health challenge. ESBLs hydrolyze β-lactam antibiotics, rendering extended-spectrum cephalosporins and monobactams ineffective. The widespread use and misuse of antibiotics in human medicine and agriculture have accelerated the development and dissemination of resistance, facilitated by horizontal gene transfer through plasmids, transposons, and integrons. Among ESBLs, TEM, SHV, and CTX-M types are most prevalent, with CTX-M-15 emerging as a dominant variant, especially in Asia, including India. Klebsiella species are the primary reservoirs of ESBL genes and are frequently implicated in nosocomial outbreaks. Accurate detection and molecular characterization of these strains are essential for epidemiological surveillance and outbreak control. Molecular typing techniques such as SDS-PAGE and RAPD are valuable tools for studying clonal relationships and resistance gene dissemination. Despite the high prevalence of ESBL-producing Klebsiella in India, limited data exist for regions of Maharashtra. This study was undertaken to determine the phenotypic prevalence and molecular epidemiology of ESBL-producing Klebsiella species in these regions, establishing a baseline for resistance surveillance and control strategies.


Keywords: Klebsiella species, ESBL’s, MDR, TEM


References:

Abraham, E. P. & Chain, E. (1940). An enzyme from bacteria able to destroy penicillin. Nature 146: 837. https://doi.org/10.1038/146837a0 

Alexander, C. & Rietschel, E. T. (2001). Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7: 167-202. https://doi.org/10.1177/09680519010070030101 

Ambler, R. P., Coulson, A. F., Frere, J. M., Ghuysen, J. M., Joris, B., Forsman, M., et al., (1991). A standard numbering scheme for the class A β-lactamases.Biochem J 276: 269-270. https://doi.org/10.1042/bj2760269 

Amyes, S. G. B. (2010). Antibacterial Chemotherapy. 1st Ed. Oxford university press. Oxford, UK.

Arakawa, Y., Ohta, M., Wacharotayankun, R., Mori, M., Kido, N., Ito, H., et al., (1991). Biosynthesis of Klebsiella K2 capsular polysaccharide in E. coli HB101requires the functions of rmpA and the chromosomal cps gene cluster of the virulentstrain K. pneumoniae Chedid (O1:K2). Infect Immun 59: 2043-2050. https://doi.org/10.1128/iai.59.6.2043-2050.1991 

Bell, J. M., Chitsaz, M., Turnidge, J.D., Barton, M., Walters, L.J. & Jones, RN, (2007). Prevalence and Significance of a Negative Extended-Spectrum β-Lactamase (ESBL) Confirmation Test Result after a Positive ESBL Screening Test Result for Isolates of Escherichia coli and Klebsiella pneumoniae: Results from the SENTRY Asia-Pacific Surveillance Program. J Cli Microbiol, 45(50): 1478-1482. https://doi.org/10.1128/JCM.02470-06 

Bennett, J. W. & Chung, K. T. (2001). Alexander Fleming and the discovery of penicillin. Adv Appl Microbiol 49: 163-184. https://doi.org/10.1016/s0065-2164(01)49013-7 

Bleich, A., Kirsch, P., Sahly, H., Fahey, J., Smoczek, A., Hedrich, H. J. & Sundberg, J. P. (2008). K. oxytoca: opportunistic infections in laboratory rodents.LabAnim 42: 369-375. https://doi.org/10.1258/la.2007.06026e 

Bonnet, R. (2004). Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48: 1-14. https://doi.org/10.1128/aac.48.1.1-14.2004 

Bortz, D., Jackson, T., Taylor, K., Thompson, A. & Younger J. (2008). Klebsiella pneumoniae flocculation dynamics. Bull Math Biol 70: 745-68. https://doi.org/10.1007/s11538-007-9277-y 

Bradford, P. A. (2001). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14: 933-951. https://doi.org/10.1128/cmr.14.4.933-951.2001 

Brisse, S., Grimont, F. & Grimont, P. (2006). The Genus Klebsiella. Prokaryotes 6: 159-196. https://doi.org/10.1007/0-387-30746-X_8 

Brisse, S., Issenhuth-Jeanjean, S. & Grimont, P. A. (2004). Molecular serotyping of Klebsiella species isolates by restriction of the amplified capsular antigen gene cluster. J Clin Microbiol 42: 3388-3398. https://doi.org/10.1128/jcm.42.8.3388-3398.2004 

Brooks, G., Butel, S., Morse, S. (2007). Enteric Gram negative rods (Enterobacteriaceae). In: Jawetz, Melnick & Adelberg’s Medical Microbiology. 24th Ed, McGraw-Hill Medical. New York, USA.

Bush, K. & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54: 969-976. https://doi.org/10.1128/aac.01009-09 

Chiang, CS, Liaw, GJ, 2005, Presence of βlactamase Gene TEM-1 DNA Sequence in Commercial Taq DNA Polymerase, Journal of clinical Microbiology, vol. 43, no. 1, 530-531. https://doi.org/10.1128/JCM.43.1.530-531.2005 

Chuang, Y. P., Fang, C. T., Lai, S. Y., Chang, S. C. & Wang, J. T. (2006). Genetic determinants of capsular serotype K1 of K. pneumoniae causing primary pyogenic liver abscess. J Infect Dis 193: 645-654. https://doi.org/10.1086/499968 

CLSI Performance Standards for Antimicrobial Susceptibility Testing, (2010). Twentieth informational supplement, CLSI document M-100-S-20, Waype PA: Clinical and laboratory standard institute, 2010.

Costas, M., Holmes, B. & Sloss, L. L. (1990). Comparison of SDS-PAGE protein patterns with other typing methods for investigating the epidemiology of 'Klebsiella aerogenes'. Epidemiol Infect 104: 455-465. https://doi.org/10.1017/s0950268800047464 

Datta, N. & Kontomichalou, P. (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208: 239-241. https://doi.org/10.1038/208239a0 

Drancourt, M., Bollet, C., Carta, A. & Rousselier, P. (2001). Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultellagen. nov., with description of R. ornithinolytica comb. nov., R. terrigenacomb. nov. and R.planticolacomb. nov. Int J Syst Evol Microbiol 51: 925-932. https://doi.org/10.1099/00207713-51-3-925 

Drawz, S. M. & Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23: 160-201. https://doi.org/10.1128/cmr.00037-09 

Duman, M., Abacioglu, H., Karaman, M. & Ozkan, H. (2005). β-lactam antibiotic resistance in aerobic commensal fecal flora of new born. Pediatr Int 47:267-273.

Fang, F. C., Sandler, N. & Libby, S. J. (2005). Liver abscess caused by magA+ K. pneumoniae in North America. J Clin Microbiol 43: 991-992.

Farkosh, M. S. (2007). Extended-Spectrum betalactamase Producing Gram Negative Bacilli. http://nosoweb.org/infectious diseases/esbl.htm

Friedländer, C. (1882). Über die Schizomyceten bei der acuten fibriösen Pneumonie. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medicin, 87(2), 319–324. https://doi.org/10.1007/BF01934943

Friedman, C., Callery, S., Jeanes, A., Piaskowski, P. & Scott, L. (2005). Best Infection Control Practices for Patients with Extended Spectrum Beta Lactamase Enterobacteriacae. International Infection Control Council.

Fung, C. P., Chang, F. Y., Lee, S. C., Hu, B. S., Kuo, B. I., Liu, C. Y., et al., (2002). A global emerging disease of K. pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50: 420-424. https://doi.org/10.1136/gut.50.3.420 

Ghuysen, J. M. (1991). Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45: 37-67. https://doi.org/10.1146/annurev.mi.45.100191.000345 

Gniadkowski, M. (2008). Evolution of extended-spectrum β-lactamases by mutation. Clin Microbiol Infect 14: 11-32. https://doi.org/10.1111/j.1469-0691.2007.01854.x 

Goldsworthy, P. D. & McFarlane, A. C. (2002). Howard Florey, Alexander Fleming and the fairy tale of penicillin. Med J 176: 176-178. https://doi.org/10.5694/j.1326-5377.2002.tb04349.x 

Gori, A., Espinasse, F., Deplano, A., Nonhoff, C., Nicolas, M. H., & Struelens A. J. (1996). Comparision of pulse field gel electrophoresis and randomly amplified DNA polymorphism analysis for typing extended spectrum β- lactamase producing Klebsiella pneumoniae. J Clin Microbiol 34 (10): 2448-2453. https://doi.org/10.1128/jcm.34.10.2448-2453.1996 

Hall, B. G. & Barlow, M. (2004). Evolution of the serine β-lactamases: past, presentand future. Drug Resist Updat 7: 111-123. https://doi.org/10.1016/j.drup.2004.02.003 

Hansen, D. S., Aucken, H. M., Abiola, T. & Podschun, R. (2004). Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 42: 3665-3669. https://doi.org/10.1128/jcm.42.8.3665-3669.2004 

Hansen, D. S., Skov, R., Benedi, J. V., Sperling, V. & Kolmos, H. J. (2002). Klebsiella typing: pulsed-field gel electrophoresis (PFGE) in comparison with O:K-serotyping.Clin Microbiol Infect 8: 397-404. https://doi.org/10.1046/j.1469-0691.2002.00411.x 

Hawkey, PM, 2008, Prevalence and clonality of extended-spectrum β-lactamases in Asia. Clinical Microbiology and Infection(14):159-165. https://doi.org/10.1111/j.1469-0691.2007.01855.x 

Heritier, C., Poirel, L., Fournier, P. E., Claverie, J. M., Raoult, D. & Nordmann, P. (2005). Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother 49: 4174-4179. https://doi.org/10.1128/AAC.49.10.4174-4179.2005 

Hernandez-Alles, S., Alberti, S., Alvarez, D., Dosmenech-sanchez, A., Martinez, L., Gil, J., Thomas, M. & Benedi, J. (1999). Porin expression in clinical isolates of Klebsiella pneumoniae. Microbial 145: 673-679. http://dx.doi.org/10.1099/13500872-145-3-673 

Ishii, Y., Galleni, M., Ma, L., Frere, J. M. & Yamaguchi, K. (2007). Biochemical characterisation of the CTX-M-14 β-lactamase. Int J Antimicrob Agents 29: 159- 164. https://doi.org/10.1016/j.ijantimicag.2006.09.005 

Jacoby, G. A., & Medeiros, A. A. (1991). More extended-spectrum beta-lactamases.Antimicrob Agents Chemother 35(9):1644-1649.

Jain, A. & Mondal, R. (2007). Prevalance and antimicrobial resistance pattern of extended spectrum beta lactamase producing Klebsiella spp. from cases of neonatal septicemia. Ind J Med Microbiol 125: 89-94.

Kliebe, C., Nies, B. A., Meyer, J. F., Tolxdorff-Neutzling, R. M. & Wiedemann, B. (1985). Evolution of plasmid-coded resistance to broad-spectrum cephalosporins.Antimicrob Agents Chemother 28: 302-307. https://doi.org/10.1128/aac.28.2.302 

Knothe, H., Shah, P., Krcmery, V., Antal, M. & Mitsuhashi, S. (1983). Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime inclinical isolates of K. pneumoniae and Serratia marcescens. Infection 11: 315-317. https://doi.org/10.1007/bf01641355 

Kovtunovych, G., Lytvynenko, T., Negrutska, V., Lar, O., Brisse, S. & Kozyrovska, N. (2003). Identification of K. oxytoca using a specific PCR assay targeting the polygalacturonase pehXgene. Res Microbiol 154: 587-592. https://doi.org/10.1016/s0923-2508(03)00148-7 

Lee, Y. H., Cho, B., Bae, I. K., Chang, C. L. & Jeong, S. H. (2006). K. pneumoniae strains carrying the chromosomal SHV-11 β-lactamase gene produce the plasmid-mediated SHV-12 extended-spectrum β-lactamase more frequently than those carrying the chromosomal SHV-1 β-lactamase gene. J Antimicrob Chemother57: 1259-1261. https://doi.org/10.1093/jac/dkl115 

Leflon-Guibout, V., Heym, B. & Nicolas-Chanoine, M. (2000). Updated sequence information and proposed nomenclature for bla(TEM) genes and their promoters. Antimicrob Agents Chemother 44: 3232-3234. https://doi.org/10.1128/aac.44.11.3232-3234.2000 

Lin, J. C., Chang, F. Y., Fung, C. P., Xu, J. Z., Cheng, H. P., Wang, J. J., Huang, L. Y. & Siu, L. K. (2004). High prevalence of phagocytic-resistant capsular serotypes of K. pneumoniae in liver abscess. Microbes Infect 6: 1191-1198. https://doi.org/10.1016/j.micinf.2004.06.003

Livermore, D. M. & Woodford, N. (2006). The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14: 413-420. https://doi.org/10.1016/j.tim.2006.07.008 

Livermore, D. M. (1995). β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8: 557-584. https://doi.org/10.1128/cmr.8.4.557 

Milch, H. & Deak, S. (1964). Studies on Klebsiella infections by phage detection and phage typing. Acta Microbiol Acad Sci Hung 11: 251-261.

Miriagou, V., Carattoli, A., Tzelepi, E., Villa, L. & Tzouvelekis, L. S. (2005). IS26-associated In4-type integrons forming multiresistance loci in enterobacterial plasmids. Antimicrob Agents Chemother 49: 3541-3543. https://doi.org/10.1128/aac.49.8.3541-3543.2005 

Nassif, X., Sansonetti, P. J., & Corthésy-Theulaz, I. (1986). Role of siderophores in the pathogenicity of Klebsiella pneumoniae: Aerobactin production enhances virulence in experimental infections. Infection and Immunity, 54(3), 603–608. https://doi.org/10.1128/iai.54.3.603-608.1986

Paterson, D. L. (2006). Resistance in gram-negative bacteria: Enterobacteriaceae. American Journal of Infection Control, 34(5, Supplement), S20–S28. https://doi.org/10.1016/j.ajic.2006.05.238

Paterson, D. & Bonomo, R. (2005). Extended spectrum beta lactamase: A clinical update. Cli Microbiol Rev 18(4): 657-86. Pub Med: 16223952. https://doi.org/10.1128/cmr.18.4.657-686.2005 

Peirano, G. & Pitout, J. D. D. (2010). Molecular epidemiology of Escherichia coli producing CTX-M β-Lactamases : worldwide emergence of clone ST131 025:H4. IntJ Antimicrobial Agents35: 316-321. https://doi.org/10.1016/j.ijantimicag.2009.11.003 

Perez, F., Endimiani, A., Hujer, K. M. & Bonomo, R. A. (2007).The continuing challenge ESBLs. Curr Opinion Pharmacol 7(5):459-469. https://doi.org/10.1016/j.coph.2007.08.003 

Pitout, J. D. D. & Laupland, K. B. (2008). Extended Spectrum β-Lactamase producing Enterobacteriaceae an emerging public health concern. Lancet Infect Dis 8: 159-166. https://doi.org/10.1016/s1473-3099(08)70041-0 

Pitout, J. D., Campbell, L., Church, D. L., Wang, P. W., Guttman, D. S. & Gregson, D. B. (2009). Using a commercial DiversiLab semiautomated repetitive sequence-based PCR typing technique for identification of E. coli clone ST131producing CTX-M-15. J Clin Microbiol 47: 1212-1215. https://doi.org/10.1128/jcm.02265-08 

Pitton, J. S. (1972). Mechanisms of bacterial resistance to antibiotics. ErgebPhysiol 65: 15-93. https://doi.org/10.1007/3-540-05814-1_2

Poduschum, R. & Ullman, U. (1998). Klebsiella species as nosocomial pathogens: Epidemiology, Taxonomy, Typing methods, and pathogenicity factors. Cli Microbiol Rev 11:589 – 603. https://doi.org/10.1128/cmr.11.4.589 

Poirel, L., Naas, T. & Nordmann, P. (2008). Genetic support of extended-spectrum β-lactamases. Clin Microbiol Infect 14: 75-81. https://doi.org/10.1111/j.1469-0691.2007.01865.x 

Poole, K. (2004). Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10: 12-26. https://doi.org/10.1111/j.1469-0691.2004.00763.x 

Rahman, M. M., Haque, J.A., Hossain, M. A., Sultana, R., Islam, F., AHM. & Islam, S. (2004). Prevalence of extended spectrum beta_lactamase-producing E. coli and Klebsiella pneumoniae in an urban hospital in Dhaka Bangladesh. Int J Antimicrob Agents. 24(5): 508-510. https://doi.org/10.1016/j.ijantimicag.2004.05.007 

Riley L. W. (2004). Molecular epidemiology of infectious disease- principle and practices. Washington D. C. ASM Press.

Sabate, M., Miro, E., Navarro, F., Verges, C., Aliaga, R., Mirelis, B. & Prats, G. (2002). β-lactamases involved in resistance to broad-spectrum cephalosporins in E.coli and Klebsiella spp. clinical isolates collected between 1994 and 1996, in Barcelona, Spain. J Antimicrob Chemother 49: 989-997. https://doi.org/10.1093/jac/dkf057 

Schelenz, S., Bramham, K. & Goldsmith, D. (2007). Septic arthritis due to extended spectrum beta lactamase producing K. pneumoniae. Joint Bone Spine 74: 275-278. https://doi.org/10.1016/j.jbspin.2006.08.007 

Schwaber, M. J., Navon-Venezia, S., Kaye, K. S., Ben-Ami, R., Schwartz, D. & Carmeli, Y. (2006). Clinical and economic impact of bacteremia with extended spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother50: 1257-1262. https://doi.org/10.1128/aac.50.4.1257-1262.2006 

Sharma, J., Sharma, M., & Roy, P. (2010). Detection of TEM and SHV genes in E. coli and Klebsiella pneumoniae isolates in a tertiary care hospital from India. Ind J Med Res132: 332-336.

Smet, A., Martel, A., Persoons, D., Dewulf, J., Heyndrickx, M., Catry, B., Herman, L., Haesebrouck, F. & Butaye, P. (2008). Diversity of extended-spectrum β-lactamases and class C β-lactamases among cloacal E. coli Isolates in Belgian broiler farms. Antimicrob Agents Chemother 52: 1238-1243. https://doi.org/10.1128/aac.01285-07 

Spratt, B. G. (1994). Resistance to antibiotics mediated by target al.,terations. Science 264: 388-393. https://doi.org/10.1126/science.8153626 

Strampfer, M. J., Schoch, P. E. & Cunha, B. A. (1987). Cerebral abscess cause by Klebsiella ozaenae. J Clin Microbiol 25: 1553-1554. https://doi.org/10.1128/jcm.25.8.1553-1554.1987 

Tribuddharat, C., Srifuengfung, S. & Chiangjong, W. (2008). Preliminary study of randomly amplified polymorphic DNA analysis for typing extended spectrum beta- lactamase producing Klebsiella pneumoniae. J Med Assoc Thai 91(4): 527-532.

Vimont, S., Mnif, B., Fevre, C. & Brisse, S. (2008). Comparison of PFGE and multilocus sequence typing for analysis of K. pneumoniae isolates. J Med Microbiol 57: 1308-1310. https://doi.org/10.1099/jmm.0.2008/003798-0 

Wilke, M. S., Lovering, A. L. & Strynadka, N. C. (2005). β-lactam antibiotic resistance: a current structural perspective. CurrOpin Microbiol 8: 525-533. https://doi.org/10.1016/j.mib.2005.08.016 

Yusha’u, M. M., Kumurya, A. S. & Suleiman, L. (2010). Prevalence of Extended spectrum β-lactamases among Enterobacteriaceae in Murtala Mohammed specialist hospital, Kano, N. J Pure Appl Sci 3(1): 169- 172.

Download this article as Download

How to cite this article:

Thosar, M. G. and Pravin Vasantrao Gadakh. 2025. Extended Spectrum β-lactamase Producing Klebsiella an Emerging Threat to Human Health, Epidemiology and Detection Methods: A Review.Int.J.Curr.Microbiol.App.Sci. 14(8): 44-58. doi: https://doi.org/10.20546/ijcmas.2025.1408.005
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations