Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:7, July, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(7): 229-234
DOI: https://doi.org/10.20546/ijcmas.2025.1407.028


Synthesis and Role of Biofilm as a Matrix for Bacterial Protection
Karuppiah Parthiban1#* and G. Buvaneswari2#
1Department of Microbiology and Immunology, St Joseph University in Tanzania, St Joseph College of Health and Allied Sciences, Dar Es salaam 11007, United Republic of Tanzania 2Department of Biotechnology, Hindusthan College of Arts & Science, Coimbatore, Tamil Nadu, India #These authors contributed equally to this work
*Corresponding author
Abstract:

Bacterial biofilms consist of structured groups of microorganisms that are surrounded within a self-produced extracellular polymeric substance (EPS) matrix, adhering to both living and non-living surfaces. Biofilms represent a fundamental mode of bacterial life across natural, industrial, and clinical settings. The formation of biofilms enhances the survival of bacteria by providing a shield against environmental challenges, antimicrobial agents, and the immune responses of the host. Understanding the molecular mechanisms that govern biofilm formation, maintenance, and dispersal is essential for developing effective strategies to control harmful biofilms and harness beneficial ones. Biofilm formation involves the production of extracellular polymeric substances (EPS), which play a crucial role in the structural integrity and functionality of the biofilm matrix. Additionally, chaperones are essential for protein folding and stability within these complex microbial communities.


Keywords: Biofilm, EPS, Heat, Shock protein


References:

Bhaskar, P.V., Bhosle, N.B., 2005. Microbial extracellular polymeric substances in marine biogeochemical processes, Curr. Sci. 88 (1), 45–53.

Bissett WP, Walsh JJ, Dieterle DA, Carder KL. Carbon cycling in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes. Deep Sea Research Part I: Oceanographic Research Papers. 1999 Feb 1;46(2):205-69.

Bott TR. Aspects of biofilm formation and destruction. Corrosion Reviews. 1993 Jun 1;11(1-2):1-24.

Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T. A new device for rapid evaluation of biofilm formation potential by bacteria. Journal of microbiological methods. 2007 Mar 1;68(3):605-12.

Choppin, G.R., 1992. The role of natural organics in radionuclide migration in naturalaquifer systems. Radiochimmica Acta 58, 113-120.

Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., & Melton, D. M. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microbiology, 22(6), 996–1006. https://doi.org/10.1128/JCM.22.6.996-1006.1985

Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28, 73-153.

Frølund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water research. 1996 Aug 1;30(8):1749-58.

Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annual review of cell biology. 1993 Nov;9(1):601-34.

Gilbert, P., Allison, D. G., Jacob, A., Körner, D., Wolfaardt, G., & Foley, I. (1997). Immigration of planktonic Enterococcus faecalis cells into mature E. faecalis biofilms. In J. T. Wimpenny, P. Handley, P. Gilbert, & H. M. Lappin-Scott (Eds.), Biofilms: Community interactions and control (pp. 133–142). Cardiff, UK: Bioline.

Hartl FU, Hlodan R, Langer T. Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends in biochemical sciences. 1994 Jan 1;19(1):20-5.

Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annual review of biochemistry. 1993 Jul;62(1):349-84.

Hunter, R.C., Beveridge, T.J., 2005. High resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy. J. Bacteriol. 187, 7619-7630.

Kirchman DL, Meon B, Cottrell MT, Hutchins DA, Weeks D, Bruland KW. Carbon versus iron limitation of bacterial growth in the California upwelling regime. Limnology and oceanography. 2000 Dec;45(8):1681-8.

Krembs, C., Eicken, H., Junge, K., & Deming, J. W. (2002). High concentrations of exopolymeric substances in Arctic winter sea ice: Implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Research Part I: Oceanographic Research Papers, 49(12), 2163–2181. https://doi.org/10.1016/S0967-0637(02)00122-X

Bazylinski, D. A., Dean, A. J., Schüler, D., Phillips, E. J. P., & Lovley, D. R. (2000). N?-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environmental Microbiology, 2(3), 266–273. https://doi.org/10.1046/j.1462-2920.2000.00096.x

Kumar, C.G., Joo, H.S., Choi, J. W., Koo, Y.-M., Chang, C.-S., 2004. Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme and Microbial Technology 34, 673-681.

Leppard, G.G., 1995. The characterization of algal and microbial mucilage and their aggregates in aquatic ecosystem. Sci. Total Environ. 165, 103-131.

Leppard, G.G., 1997. Colloidal organic fibrils of acid polysaccharides in surface waters: electron-optical characteristics, activities and chemical estimates of abundance. Colloids Surf., A Physicochem. Eng. Asp. 120, 1-15.

Lindquist S. The heat-shock response. Annual review of biochemistry. 1986 Jan 1;55(1):1151-91.

Marsh, P., & Martin, M. (1992). “Periodontal diseases.” In Oral Microbiology (Aspects of Microbiology, Vol. 1, pp. 167–197). Springer. https://doi.org/10.1007/978-1-4615-7556-6_7

Narisawa N, Furukawa S, Ogihara H, Yamasaki M. Estimation of the biofilm formation of Escherichia coli K-12 by the cell number. Journal of bioscience and bioengineering. 2005 Jan 1;99(1):78-80.

Paerl HW, Zehr JP. Marine nitrogen fixation. Microbial ecology of the oceans. 2000:387-426.

Palaniappan R, Krishnamurthy K. Heterotrophic bacteria of nearshore waters of the Bay of Bengal and the Arabian Sea. Indian journal of marine sciences. New Delhi. 1985;14(2):113-4.

Passow, U., 2002. Transparent exopolymer particles (TEP) in aquatic environments, Progr Oceanogr. 55, 287–333.

Philippis, R.D., Sili, C., Paperi, R., Vincenzini, M., 2001. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. Journal of Applied Phycology. 13, 293-299.

Ryther, J.H. and Dunstan, W.M., 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171(3975), 1008-1013.

Sonak S, Bhosle N. Observations on biofilm bacteria isolated from aluminium panels immersed in estuarine waters. Biofouling. 1995 Mar 1;8(3):243-54.

Stepanovi?, S., Vukovi?, D., Daki?, I., Savi?, B., & Švabi?-Vlahovi?, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175–179. https://doi.org/10.1016/S0167-7012(00)00122-6

Tiedje JM, Simkins S, Groffman PM. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant and Soil. 1989 Apr;115(2):261-84.

Travers AA, Mace HA. The heat-shock phenomenon in bacteria-a protection against DNA relaxation. InHeat shock from bacteria to man 1982 (pp. 127-130). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Türetgen, I. (2004). Comparison of the efficacy of free residual chlorine and monochloramine against biofilms in model and full scale cooling towers. Biofouling, 20(2), 81–85. https://doi.org/10.1080/08927010410001710027

Vasudevan, P., Nair, M. K. M., Annamalai, T., & Venkitanarayanan, K. (2003). Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Veterinary Microbiology, 92(1–2), 179–185. https://doi.org/10.1016/S0378-1135(02)00360-7.

Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell. 1998 Apr 3;93(1):93-101.

Wang, N., Butler, J. P., & Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science, 260, 1124–1127.

Watnick, P. I., Fullner, K. J., & Kolter, R. (1999). A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. Journal of Bacteriology, 181(11), 3606–3609. https://doi.org/10.1128/jb.181.11.3606-3609.1999

Download this article as Download

How to cite this article:

Karuppiah Parthiban and Buvaneswari, G. 2025. Synthesis and Role of Biofilm as a Matrix for Bacterial Protection.Int.J.Curr.Microbiol.App.Sci. 14(7): 229-234. doi: https://doi.org/10.20546/ijcmas.2025.1407.028
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations