![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
This study aims to identify antifungal phytochemicals through GC-MS analysis to evaluate their potential applications from Melia azedarach L. leaf extract (ethanolic). The phytochemical profile of the extract was analyzed using Gas Chromatography-Mass Spectrometry (GC/MS). The presence of various bioactive constituents, including alkaloids, flavonoids, tannins, saponins, glycosides, and terpenoids, was identified. Six key compounds, including Decane, Squalene, Eicosane, a Benzenepropanoic acid derivative, Phytol, and Hexadecanoic acid ester, were identified. These compounds are documented in the literature for their capacity to disrupt fungal membranes, inhibit spore germination, and function as antioxidants, thereby enhancing the antifungal potential of M. azadirach. The broad-spectrum bioefficacy of this plant not only supports its traditional medicinal applications but also underscores its potential in sustainable disease management strategies.
Al-Omar, M. A., & Amr, A. E. G. E. (2010). Synthesis of some new pyridine-2, 6-carboxamide-derived Schiff bases as potential antimicrobial agents. Molecules, 15(7), 4711-4721.
Al-Rubae, A. Y. (2009). The potential uses of Melia azedarach L. as a pesticidal and medicinal plant, review. American-Eurasian Journal of Sustainable Agriculture, 3(2), 185-194.
Ansari, M. A., Anurag, A., Fatima, Z., & Hameed, S. (2013). Natural phenolic compounds: a potential antifungal agent. Microb. Pathog. Strateg. Combat. Sci. Technol. Educ, 1, 1189-1195.
Balamurugan, V., Fatima, S., & Velurajan, S. (2019). A guide to phytochemical analysis. International Journal of Advance Research and Innovative Ideas in Education, 5(1), 236-245.
Bashir A., Ibrar K., Shumaila B., and Sadiq A. (2012). Chemical composition and antifungal, phytotoxic, brine shrimp cytotoxicity, insecticidal and antibacterial activities of the essential oils of Acacia modesta, Journal of Medicinal Plants Research. 6(31): 4653–4659
Begum, S. F. M., Priya, S., Sundararajan, R., & Hemalatha, S. (2017). Novel anticancerous compounds from Sargassum wightii: In silico and in vitro approaches to test the antiproliferative efficacy. Journal of Advanced Pharmacy Education & Research| Jul-Sep, 7(3).
Bhandari, S., Yadav, P. K., & Sarhan, A. (2021). Botanical fungicides; current status, fungicidal properties and challenges for wide scale adoption: a review. Reviews in Food and Agriculture, 2(2), 63-68.
Bhat, M. P., Kumar, R. S., Chakraborty, B., Nagaraja, S. K., Babu, K. G., & Nayaka, S. (2024). Eicosane: An antifungal compound derived from Streptomyces sp. KF15 exhibits inhibitory potential against major phytopathogenic fungi of crops. Environmental Research, 251, 118666.
Bhat, M. P., Rudrappa, M., Hugar, A., Gunagambhire, P. V., Kumar, R. S., Nayaka, S.,... & Perumal, K. (2023). In-vitro investigation on the biological activities of squalene derived from the soil fungus Talaromyces pinophilus. Heliyon, 9(11): e21461
Bozdogan, A. M. (2014). Assessment of total risk on non-target organisms in fungicide application for agricultural sustainability. Sustainability, 6(2), 1046-1058.
Canli K, Turu D, Benek A, Bozyel ME, Simsek Ö, Altuner EM (2023). Biochemical and Antioxidant Properties as well as Antimicrobial and Antibiofilm Activities of Allium scorodoprasum subsp. jajlae (Vved.) Stearn. Mol Biol. 45(6):4970-4984.
Carpinella, M. C., Giorda, L. M., Ferrayoli, C. G., & Palacios, S. M. (2003). Antifungal effects of different organic extracts from Melia azedarach L. on phytopathogenic fungi and their isolated active components. Journal of Agricultural and Food Chemistry, 51(9), 2506-2511.
Choudhury, D., Dobhal, P., Srivastava, S., Saha, S., & Kundu, S. (2018). Role of botanical plant extracts to control plant pathogens-A review. Indian Journal of Agricultural Research, 52(4), 341-346.
Deb, K., Kaur, A., Ambwani, S., & Ambwani, T. K. (2018). Preliminary phytochemical analyses of hydromethanolic leaf extract of Melia azedarach L. Journal of Medicinal Plants Study, 6, 4-8.
Dembitsky, V. M. (2023). Biological activity and structural diversity of steroids containing aromatic rings, phosphate groups, or halogen atoms. Molecules, 28(14), 5549.
Egbuna, C., Ifemeje, J. C., Maduako, M. C., Tijjani, H., Udedi, S. C., Nwaka, A. C., & Ifemeje, M. O. (2018). Phytochemical test methods: qualitative, quantitative and proximate analysis. In Phytochemistry (pp. 381-426). Apple Academic Press.
Getnet, M., Alemu, K., & Tsedaley, B. (2024). Status of postharvest papaya anthracnose (Colletotrichum gloeosporioides) in Assosa Zone, Western Ethiopia. Discover Food, 4(1). https://doi.org/10.1007/s44187-024-00095-7
Habib, R., Mohyuddin, A., Khan, Z., & Mahmood, T. (2017). Analysis of non-polar chemical profile of Melia Azedarach L. Scientific Inquiry and Review, 1(1), 49–54.
Haque, E., Irfan, S., Kamil, M., Sheikh, S., Hasan, A., Ahmad, A., & Mir, S. S. (2016). Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiology, 85, 436-443.
Hieu, T. T., Chung, N. T., Dung, V. C., & Duc, D. X. (2023). Chemical Composition and Bioactivities of Melia azedarach (Meliaceae): A Comprehensive Review. Current Organic Chemistry, 26(24), 2160–2187.
Islam, T., Danishuddin, Tamanna, N. T., Matin, M. N., Barai, H. R., & Haque, M. A. (2024). Resistance mechanisms of plant pathogenic fungi to fungicide, environmental impacts of fungicides, and sustainable solutions. Plants, 13(19), 2737.
Jafari, S., Saeidnia, S., Ardekani, M. R. S., Hadjiakhoondi, A., & Khanavi, M. (2013). Micromorphological and preliminary phytochemical studies of Azadirachta indica and Melia azedarach. Turkish Journal of Botany, 37(4), 690-697.
Jawad, D. a. A., & Garaawi, N. I. A. (2022). phytochemical and the antifungal activity of Melia azedarach Ethanol extracts from leaves of Plants in Iraq. International Journal of Health Sciences, 2679–2686.
Karou, D., Savadogo, A., Canini, A., Yameogo, S., Montesano, C., Simpore, J., & Traore, A. S. (2006). Antibacterial activity of alkaloids from Sida acuta. African journal of biotechnology, 5(2), 195-200.
Khan, I., & Javaid, A. (2021). Identification of biologically important compounds in neem leaves through GC-MS analysis. Jordan Journal of Pharmaceutical Sciences, 14(3).
Kong, Y. R., Jong, Y. X., Balakrishnan, M., Bok, Z. K., Weng, J. K. K., Tay, K. C.,... & Khaw, K. Y. (2021). Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology, 10(4), 287.
Koul, B., Pudhuvai, B., Sharma, C., Kumar, A., Sharma, V., Yadav, D., & Jin, J. O. (2022). Carica papaya L.: a tropical fruit with benefits beyond the tropics. Diversity, 14(8), 683.
Lima, T. L., Souza, L. B., Tavares-Pessoa, L. C., Santos-Silva, A. M. D., Cavalcante, R. S., Araújo-Júnior, R. F. D., & Silva-Júnior, A. A. D. (2020). Phytol-loaded solid lipid nanoparticles as a novel anticandidal nanobiotechnological approach. Pharmaceutics, 12(9), 871.
Nagori, M., Rajput, D., Choudhary, G., & Khabiya, R. (2025). Qualitative and Quantitative Methods of Phytochemical Analysis. Pharmacognosy and Phytochemistry: Principles, Techniques, and Clinical Applications, 143-166.
Nasr, Z. S., El-shershaby, H., Sallam, K. M., Abed, N., Abd-El Ghany, I., & Sidkey, N. (2022). Evaluation of Antimicrobial Potential of Tetradecane Extracted from Pediococcus acidilactici DSM: 20284-CM Isolated from Curd Milk. Egyptian Journal of Chemistry, 65(3), 705-713.
Ntalli, N. G., & Caboni, P. (2014). Biofunctional Properties of Melia azedarach Extracts. In Instrumental Methods for the Analysis and Identification of Bioactive Molecules (pp. 151-163). American Chemical Society.
Ons, L., Bylemans, D., Thevissen, K., & Cammue, B. P. (2020). Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms, 8(12), 1930.
Padma, M., Ganesan, S., Jayaseelan, T., Azhagumadhavan, S., Sasikala, P., Senthilkumar, S., & Mani, P. (2019). Phytochemical screening and GC-MS analysis of bioactive compounds present in the ethanolic leaves extract of Silybum marianum (L). Journal of Drug Delivery and Therapeutics, 9(1): 85-89
Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction and pre-phytochemical screening strategies for herbal drug. Journal of Pharmacognosy and Phytochemistry. 2 (5): 115-119
Pinnamaneni, R. (2017). Nutritional and medicinal value of papaya (Carica papaya Linn.). World journal of pharmacy and pharmaceutical sciences, 6(8), 2559-2578.
Rawal R.D., (2010). Fungal diseases of papaya and their management. Acta Horticulturae 851: 443-446.
Rodríguez, B., Pacheco, L., Bernal, I., & Piña, M. (2023). Mechanisms of Action of Flavonoids: Antioxidant, Antibacterial and Antifungal Properties. Ciencia, Ambientey Clima, 6(2), 33-66.
Ryu, J., Kwon, S. J., Ahn, J. W., Jo, Y. D., Kim, S. H., Jeong, S. W.,... & Kang, S. Y. (2017). Phytochemicals and antioxidant activity in the kenaf plant (Hibiscus cannabinus L.). Journal of Plant Biotechnology, 44(2), 191-202.
Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30(12), 3875-3883.
Sharma, M., Tarafdar, A., Ghosh, R., & Gopalakrishanan, S. (2017). Biological control as a tool for eco-friendly management of plant pathogens. In Microorganisms for sustainability (pp. 153–188).
Singh, D., & Chaudhuri, P. K. (2018). Structural characteristics, bioavailability and cardioprotective potential of saponins. Integrative medicine research, 7(1), 33-43.
Sultana, S., Akhtar, N., & Asif, H. M. (2013). Phytochemical screening and antipyretic effects of hydro-methanol extract of Melia azedarach leaves in rabbits. Bangladesh Journal of Pharmacology, 8(2), 214-217.
Tan, G. H., Ali, A., & Siddiqui, Y. (2022). Current strategies, perspectives, and challenges in management and control of postharvest diseases of papaya. Scientia Horticulturae, 301, 111139.
Tasiwal, V., Benagi, V.I., Hegde, Y.R., Kamanna, B.C., & Naik, K.R. (2009). In vitro evaluation of botanicals, bioagents, and fungicides against anthracnose of papaya caused by Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. Karnataka Journal of Agricultural Sciences, 22, 803-806.
Uka, E., Eghianrunwa, Q. A., & Akwo, V. D. (2022). GC–MS analysis of bioactive compounds in ethanol leaves extract of Sphenocentrum jollyanum and their biological activities. Int. J. Sci. Res. Eng. Manag., 6(01).
Ventura, J. A., Costa, H., & Tatagiba, J. D. S. (2004). Papaya diseases and integrated control. In Diseases of Fruits and Vegetables: Volume II: Diagnosis and Management (pp. 201-268). Dordrecht: Springer Netherlands.
Zhou, Z., Ford, R., Bar, I., & Kanchana-Udomkan, C. (2021). Papaya (Carica papaya L.) flavour profiling. Genes, 12(9), 1416![]() |
![]() |
![]() |
![]() |
![]() |