National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
The action of abiotic stress on ornamental plants has been a subject of numerous studies. Plants can survive and grow even under unfavorable abiotic stress, however, many abiotic stresses, encountered at critical growth stages, adversely affect their aesthetics, quality and productivity in terms of yield. Further, climate change is likely to increase frequency, intensity, and duration of abiotic stresses. Wide and distant hybridization has contributed positively to improving drought, salt and heat tolerance in ornamentals through introducing abiotic stress-tolerant trait from their wild relatives. In vitro mutagenesis is another important technique used for inducing stress tolerance. Using marker assisted selection, functional genomics, QTL mapping and genetic engineering in ornamental crops, potential gene(s) have been identified, and several traits have been improved. Genes viz. AP2/ERF, bZIP TFs, MYC, and MYB have been implicated in drought stress response and Na+/H+ antiporter genes (AtNHX1, and AtSOS1), DREB1A, SOS1, WRKY4, NAC1, and SOS3, etc. have been identified for imparting salt tolerance in ornamental crops. VAM fungi maintain the homeostasis of plants under soil salinity, drought, high soil temperature, adverse pH, toxic and heavy metal stresses. In recent days nanoparticles playing major role in improve the biotic and abiotic stress tolerance.
Adachi, M., Kawabata, S., and Sakiyama, R. Effects of temperature and stem length on changes in carbohydrate content in summer-grown cut chrysanthemums during development and senescence. Postharvest Biology and Technology, 2000, 20(1): 63–70. https://doi.org/10.1016/S0925-5214(00)00106-X
Ali, E., Bazaid, S., and Hassan, F. Salinity tolerance of Taif roses by gibberellic acid (GA3). International Journal of Science and Research, 2014, 3(3): 184–192.
Anderson, N.O., and Gesick, E. Phenotypic markers for selection of winter-hardy garden chrysanthemum (Dendranthema × grandiflora Tzvelev) genotypes. Scientia Horticulturae, 2004, 101(1–2): 153–167. https://doi.org/10.1016/j.scienta.2003.10.006
Anderson, N.O., Gesick, E., Ascher, P.D., Poppe, S., Yao, S., Wildung, D., Johnson, P., Fritz, V., Rohwer, C., Klossner, L., Eash, N., Liedl, B.E., and Reith-Rozelle, J. Mammoth ‘Twilight Pink Daisy’ garden chrysanthemum. Hort Science, 2012, 47(9): 1182–1186. https://doi.org/10.21273/HORTSCI.49.12.1600
Araus, J.L., Slafer, G.A., Reynolds, M.P., and Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 2002, 89(7): 925–940. https://doi.org/10.1093/aob/mcf049
Ascher, P.D., Anderson, N.O., Fritz, V., Perillo, C., Poppe, S., Wagner, R., and Wildung, D. [Online]. Retrieved from http://www.extension.umn.edu/distribution/horticulture/components/6728-01.html
Aydinsakir, K., Tepe, A., and Buyuktas, D. Effects of saline irrigation water applications on quality characteristics of Freesia grown in greenhouses. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 2010, 23(1): 41–46.
Bai, H., Lin, P., Li, X., Liao, X., Wan, L., Yang, X., Luo, Y., Zhang, L., Zhang, F., Liu, S., and Liu, Q. DgC3H1, a CCCH zinc finger protein gene, confers cold tolerance in transgenic chrysanthemum. Scientia Horticulturae, 2021, 281: 109901. https://doi.org/10.1016/j.scienta.2021.109901
Banavath, J.N., Ganesh, S., Kim, S.-C., Mekapogu, M., Chinreddy, S.R., Ramasubba Reddy, P., Manu, K., Kim, S.-Y., and Lee, S.-H. CRISPR/Cas9 and nanotechnology pertinence in agricultural crop refinement. Frontiers in Plant Science, 2022, 13: 1–12. https://doi.org/10.3389/fpls.2022.843575
Berry, J., and Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 1980, 31(1): 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423
Beskaravainaya, M., Donyushkina, E., and Elmanova, T. Frost resistance of various Clematis species. Byulleten Gosudarstvennogo Nikitskogo Botanicheskogo Sada, 1978, 3: 65–69.
Blumwald, E., Gilad, S.A., and Maris, P.A. Sodium transport in plant cells. Biochimica et Biophysica Acta - Biomembranes, 2000, 1465(1–2): 140–151. https://doi.org/10.1016/S0005-2736(00)00135-8
Boi, H., Lin, P., Li, X., Liao, X., Wan, L., Yang, X., Luo, Y., Zhang, L., Zhang, X., Liu, S., and Liu, Q. DgC3H1, a CCCH zinc finger protein gene, confers cold tolerance in transgenic chrysanthemum. Scientia Horticulturae, 2021, 281: 109901–109907. https://doi.org/10.1016/j.scienta.2021.109901
Cabrera, R.I. Demarcating salinity tolerance in greenhouse rose production. Acta Horticulturae, 2003, 609: 51–57. https://doi.org/10.17660/ActaHortic.2003.609.5
Cabrera, R.I., Solis-Perez, R.A., and John, J.S. Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. Hort Science, 2009, 44(6): 2000–2008. https://doi.org/10.21273/HORTSCI.44.7.2000
Cai, X., Niu, G., Starman, T., and Hall, C. Response of six garden roses (Rosa × hybrida L.) to salt stress. Scientia Horticulturae, 2014, 168: 27–32. https://doi.org/10.1016/j.scienta.2013.12.032
Cai, X., Sun, Y., Starman, T., Hall, C., and Niu, G. Response of 18 Earth-Kind® rose cultivars to salt stress. Hort Science, 2014, 49(5): 544–549. https://doi.org/10.21273/HORTSCI.49.5.544
Cha-um, S., and Kirdmanee, C. In vitro flowering of miniature roses (Rosa × hybrida L. “Red Imp”) in response to salt stress. European Journal of Horticultural Science, 2010, 75(6): 239–245.
Chen, J.R., Chen, Y.B., Ziemia?ska, M., Liu, R., Deng, Z.N., Nied?wiecka-Filipiak, I., Li, Y.L., Jio, J.X., and Xiong, X.Y. Co-expression of MtDREB1C and RcXET enhances stress tolerance of transgenic China rose (Rosa chinensis Jacq.). Plant Growth Regulation, 2016, 35(4): 586–599. https://doi.org/10.1007/s00344-015-9564-z
Chen, L., Chen, Y., Jiang, J., Chen, S., Chen, F., Guan, Z., and Fang, W. The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity, and drought tolerance. Plant Cell Reports, 2012, 31(9): 1747–1758. https://doi.org/10.1007/s00299-012-1288-y
Chen, S., Jiang, J., Gu, C., and Li, P. Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA, and delays flowering in Arabidopsis thaliana. Molecular Biotechnology, 2011, 51(1): 150–173. https://doi.org/10.1007/s12033-011-9451-1
Cheng, X., Chen, S., Chen, F., Fang, W., Deng, Y., and She, L. Interspecific hybrids between Dendranthema morifolium (Ramat.) Kitamura and D. nankingense (Nakai) Tzvel achieved using ovary rescue and their cold tolerance characteristics. Euphytica, 2010, 172: 101–108. https://doi.org/10.1007/s10681-009-0056-8
Chung, M.Y., Kim, M.B., Chung, Y.M., Nou, I.S., and Kim, C.K. In vitro shoot regeneration and genetic transformation of gerbera (Gerbera hybrida Hort.) cultivar ‘Gold Eye’. Journal of Plant Biotechnology, 2016, 43(3): 255–260. http://dx.doi.org/10.5010/JPB.2016.43.2.255
Coakley, S.M., Scherm, H., and Chakraborty, S. Climate change and plant disease management. Annual Review of Phytopathology, 1999, 37: 399–426. https://doi.org/10.1146/annurev.phyto.37.1.399
Dai, F., Zhang, C., Jiang, X., Kang, M., Yin, X., Lu, P., Zhang, X., and Zheng, Y. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiology, 2012, 160(4): 2064–2082. http://dx.doi.org/10.1104/pp.112.207720
De Vries, D.P. Juvenility in hybrid-tea roses. Euphytica, 1976, 25(1): 321–328. https://doi.org/10.1007/BF00041529
Dela, G., Or, E., Ovadia, R., Nissim-Levi, A., Weiss, D., and Oren-Shamir, M. Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions. Plant Science, 2003, 164(3): 333–340. https://doi.org/10.1016/S0168-9452(02)00417-X
Demming, B., Winter, K., Krunger, A., and Czygan, F.G. Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiology, 1988, 87(1): 17–24. https://doi.org/10.1104/pp.87.1.17
Deng, Y.M., Chen, S.M., Chen, F.D., Cheng, X., and Zhang, F. The embryo rescue-derived intergeneric hybrid between Chrysanthemum and Ajania przewalskii shows enhanced salt tolerance. Plant Cell Reports, 2011, 30(12): 2177–2186. https://doi.org/10.1007/s00299-011-1123-x
Dirr, M.A. Selection of trees for tolerance to salt injury. Journal of Arboriculture, 1976, 2(9): 209–216. https://doi.org/10.48044/jauf.1976.053
Dong, J., Cao, L., Zhang, X., Zhang, W., Yang, T., Zhang, J., and Che, D. An R2R3-MYB transcription factor RmMYB108 responds to chilling stress of Rosa multiflora and conferred cold tolerance of Arabidopsis. Frontiers in Plant Science, 2021, 12: 1–10. http://dx.doi.org/10.3389/fpls.2021.696919
Du, X., Li, W., Sheng, L., Deng, Y., Wang, Y., Zhang, W., Yu, K., Jiang, J., Fang, W., and Guan, Z., Chen, S. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biology, 2018, 18(1): 1–10. https://doi.org/10.1186/s12870-018-1400-8
Erwin, J.E. Ivy geranium production. Ohio Floriculture Bulletin, 1999, 831: 15–20.
Erwin, J.E., and Engelen, G. Regal geranium production. Minnesota Commercial Flower Growers Bulletin, 1992, 41: 1–9.
Erwin, J.E., and Heins, R.D. Environmental effects on geranium development. Minnesota Commercial Flower Growers Bulletin, 1992, 41: 1–9.
Erwin, J.E., and Kovanda, B. Fuchsia production. Minnesota Commercial Flower Growers Bulletin, 1990, 1–3.
Fan, Q., Song, A., Jiang, J., Zhang, T., Sun, H., and Wang, Y. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE, 2016, 11(3): e0150572. https://doi.org/10.1371/journal.pone.0150572
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S.M.A. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 2009, 29: 185–212. https://doi.org/10.1051/agro:2008021
Feng, L., Ding, H., Wang, J.I.A., Wang, M., Xia, W., Zang, S., and Sheng, L. Molecular cloning and expression analysis of RrNHX1 and RrVHA-c genes related to salt tolerance in wild Rosa rugosa. Saudi Journal of Biological Sciences, 2015, 22(4): 417–423. https://doi.org/10.1016/j.sjbs.2015.01.008
Fox, L.J., Grose, J.N., Appleton, B.L., and Donohue, S.J. Evaluation of treated effluent as an irrigation source for landscape plants. Journal of Environmental Horticulture, 2005, 23(4): 174–178. https://doi.org/10.24266/0738-2898-23.4.174
Francois, L.E., and Clark, R.A. Salt tolerance of ornamental shrubs, trees, and ice plant. Journal of the American Society for Horticultural Science, 1978, 103(2): 280–283. https://doi.org/10.21273/JASHS.103.2.280
Gitonga, V.W., Koning-Boucoiran, C.F., Verlinden, K., Dolstra, O., Visser, R.G., Maliepaard, C., and Krens, F.A. Genetic variation, heritability, and genotype by environment interaction of morphological traits in a tetraploid rose population. BMC Genetics, 2014, 15(1): 146. https://doi.org/10.1186/s12863-014-0146-z
Govindaraj, M., Pattanashetti, S.K., Patne, N., Kanatti, A.A., and Ciftci, Y.O. Breeding cultivars for heat stress tolerance in staple food crops. In: Ciftci, Y.O. (Ed.), Next Generation Plant Breeding, 2018, pp. 45–74. Intech Open. http://oar.icrisat.org/id/eprint/10935
Greenway, H., and Munns, R. Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology, 1980, 31(1): 149–190. https://doi.org/10.1146/annurev.pp.31.060180.001053
Greyvenstein, O., Pemberton, H.B., Niu, G., Starman, T., and Byrne, D.H. Heat tolerance in garden roses. Acta Horticulturae, 2019, 1232: 165–170. https://doi.org/10.17660/ActaHortic.2019.1232.25
Greyvenstein, O., Pemberton, H.B., Starman, T., Niu, G., and Byrne, D.H. Effect of two-week high-temperature treatment on flower quality and abscission of Rosa L. ‘Belinda’s Dream’ and ‘RADrazz’ (KnockOut®) under controlled growing environments. Hort Science, 2014, 49(5): 701–705. https://doi.org/10.21273/HORTSCI.49.6.701
He, L., Wu, Y.H., Zhao, Q., Wang, B., Liu, Q.L., and Zhang, L. Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic chrysanthemum. International Journal of Molecular Sciences, 2018, 19(7): 2062. https://doi.org/10.3390/ijms19072062
He, Z., Fu, Y., and Si, H. Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Science, 2004, 166(1): 17–22. https://doi.org/10.1016/S0168-9452(03)00338-8
Hong, B., Ma, C., Yang, Y., Wang, T., Yamaguchi-Shinozaki, K., and Gao, J. Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Molecular Biology, 2009, 70(3): 231–240. https://doi.org/10.1007/s11103-009-9468-z
Hong, B., Tong, Z., Ma, N., Kasuga, M., Yamaguchi-Shinozaki, K., and Gao, J.P. Expression of the Arabidopsis DREB1A gene in transgenic chrysanthemum enhances tolerance to low temperature. Journal of Horticultural Science and Biotechnology, 2006, 81(6): 1002–1008. https://doi.org/10.1080/14620316.2006.11512146
Hong, B., Tong, Z., Ma, N., Li, J., Kasuga, M., Yamaguchi-Shinozaki, K., and Gao, J. Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Science China Life Sciences, 2006, 49(5): 436–445. https://doi.org/10.1007/s11427-006-2014-1
Hossain, Z., Mandal, A.K., Datta, S.K., and Biswas, A.K. Development of NaCl-tolerant strain in Chrysanthemum morifolium Ramat through in vitro mutagenesis. Plant Biology, 2006, 8(4): 450–461. https://doi.org/10.1055/s-2006-923951
Huang, Q., Liao, X., Yang, X., Luo, Y., Lin, P., Zeng, Q., Bai, H., Jiang, B., Pan, Y., Zhang, F., and Zhang, L. Lysine crotonylation of DgTIL1 at K72 modulates cold tolerance by enhancing DgnsLTP stability in chrysanthemum. Plant Biotechnology Journal, 2021, 19(6): 1125–1140. https://doi.org/10.1111/pbi.13533
Hura, T., Szewczyk-Taranek, B., Hura, K., Nowak, K., and Paw?owska, H. Physiological responses of Rosa rubiginosa to saline environment. Water, Air, and Soil Pollution, 2017, 228(2): 81. https://doi.org/10.1007/s11270-017-3263-2
Itai, C., Richmond, A., and Vaadia, Y. The role of root cytokinins during water and salinity stress. Israel Journal of Plant Sciences, 1968, 17(2): 187–195. https://doi.org/10.1080/0021213X.1968.10667660
Jaleel, C.A., Gopi, R., Manivannan, P., Gomathinayagam, M., Murali, P., and Panneerselvam, R. Soil-applied propiconazole alleviates the impact of salinity on Catharanthus roseus by improving antioxidant status. Pesticide Biochemistry and Physiology, 2008, 90(2): 135–139. https://doi.org/10.1016/j.pestbp.2007.11.003
Jiang, C., Xu, J., Zhang, H., Zhang, X., Shi, J., and Li, M. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast, and Arabidopsis thaliana. Plant Cell and Environment, 2009, 32(8): 1046–1059. https://doi.org/10.1111/j.1365-3040.2009.01987.x
Jiang, L., Tian, X., Li, S., Fu, Y., Xu, J., and Wang, G. The AabHLH35 transcription factor identified from Anthurium andraeanum is involved in cold and drought tolerance. Plants, 2019, 8(7): 216–225. https://doi.org/10.3390/plants8070216
Josine, T., Ji, J., Wang, G., Zhao, Q., Yang, H.L., Wang, Y.R., and Wu, W.D. AtDREB2A-CA gene over-expression in Rosa Chinensis Jacq. affects leaf ultrastructure response to salt stress. International Journal of Agriculture, 2015, 8(3): 463–476. https://api.semanticscholar.org/CorpusID:86054374
Kaicker, U.S., and Dhayani, D. Induced color mutations in roses through gamma rays. Indian Journal of Horticulture, 1986, 43(3–4): 282–290.
Küçükahmetler, O. The effects of salinity on yield and quality of ornamental plants and cut flowers. Acta Horticulturae, 2000, 573: 407–414. https://doi.org/10.17660/ActaHortic.2002.573.49
Labrada, F.P., Hernández, H.H., Pérez, M.C.L., Morales, S.G., Mendoza, A.B., and Maldonado, A.J. Nanoparticles in plants: morphophysiological, biochemical, and molecular responses. In: Plant Life under Changing Environment, 2020, pp. 289–322. Elsevier. https://doi.org/10.1016/B978-0-12-818204-8.00016-3
Larcher, W., and Bauer, H. Ecological significance of resistance to low temperature. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (Eds.), Physiological Plant Ecology I, 1981, pp. 403–437. Springer. https://doi.org/10.1007/978-3-642-68150-9_14
Lau, J., Liang, S., Wu, X., Yan, M., Klein, P.E., Young, E.L., and Byrne, D.H. Heritability of flower size and heat stress in diploid roses. Acta Horticulturae, 2019, 1232: 51–55. https://doi.org/10.17660/ActaHortic.2019.1232.9
Li, P., Song, A., Gao, C., Jiang, J., Chen, S., and Fang, W. The overexpression of a Chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiology and Biochemistry, 2015, 95: 26–34. https://doi.org/10.1016/j.plaphy.2015.07.002
Li, W., Wan, X.L., Yu, J.Y., Wang, K.L., and Zhang, J. Genome-wide identification, classification, and expression analysis of the Hsf gene family in carnation (Dianthus caryophyllus). International Journal of Molecular Sciences, 2019, 20(20): 5233. https://doi.org/10.3390/ijms20205233
Liang, S., Wu, X., and Byrne, D. Flower-size heritability and floral heat-shock tolerance in diploid roses. Hort Science, 2017, 52(5): 682–685. https://doi.org/10.21273/HORTSCI11640-16
Liu, R., Shi, H., Wang, Y., and Chen, S. Comparative physiological analysis of lotus (Nelumbo nucifera) cultivars in response to salt stress and cloning of NnCIPK genes. Scientia Horticulturae, 2014, 173: 29–36. https://doi.org/10.1016/j.scienta.2014.04.032
Liu, S., Chen, S., Chen, Y., Guan, Z., Yin, D., and Chen, F. In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel shows an improved level of abiotic stress tolerance. Scientia Horticulturae, 2011, 127(3): 411–419. https://doi.org/10.1016/j.scienta.2010.10.012
Liu, Y., He, M., Dong, F., Cai, Y., Gao, W., Zhou, Y., Huang, H., and Dai, S. The Chrysanthemum lavandulifolium ClNAC9 gene positively regulates saline, alkaline, and drought stress in transgenic Chrysanthemum grandiflora. Journal of the American Society for Horticultural Science, 2019, 144(4): 280–288. https://doi.org/10.21273/JASHS04697-19
Lorenzo, H., Cid, M.C., and Siverio, J.M. Effects of sodium on mineral nutrition in rose plants. Annals of Applied Biology, 2000, 137(1): 65–72.
Lu, M., Sun, M., and Zhang, Q.X. Studies of drought resistance of different ground-cover chrysanthemum variety seedlings. Acta Horticulturae, 2012, 937: 329–335. https://doi.org/10.17660/ActaHortic.2012.937.40
Ludlow, M.M., and Muchow, R.C. A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 1990, 43: 107–153. https://doi.org/10.1016/S0065-2113(08)60477-0.
Marissen, N. Effects of pre-harvest light intensity and temperature on carbohydrate levels and vase life of cut roses. Acta Horticulturae, 2001, 543: 331–336. https://doi.org/10.17660/ActaHortic.2001.543.40.
Marosz, A. Effect of soil salinity on nutrient uptake, growth, and decorative value of four ground cover shrubs. Journal of Plant Nutrition, 2004, 27(5): 977–989. https://doi.org/10.1081/PLN-120037531.
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9): 405–410. https://doi.org/10.1016/s1360-1385(02)02312-9.
Mittler, R. Abiotic stress, the field environment and stress combination. Trends in Plant Science, 2006, 11(1): 15–19. https://doi.org/10.1016/j.tplants.2005.11.002.
Moe, R. The effect of growing temperature on keeping quality of cut roses. Acta Horticulturae, 1975, 41: 77–92. https://doi.org/10.17660/ActaHortic.1975.41.7.
Munne-Bosch, S., and Alegre, L. Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiology, 2003, 131(3): 1816–1825. https://doi.org/10.1104/pp.102.019265.
Navarro, A., Elia, A., Conversa, G., Campi, P., and Mastrorilli, M. Potted mycorrhizal carnation plants and saline stress: growth, quality, and nutritional plant responses. Scientia Horticulturae, 2012, 140: 131–139. https://doi.org/10.1016/j.scienta.2012.03.016.
Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S., and Ali, K. Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. African Journal of Biotechnology, 2010, 9(33): 5475–5480.
Nell, T.A., and Rasmussen, H.P. Blindness in roses: Effects of high intensity light and blind shoot prediction severity. Journal of the American Society for Horticultural Science, 1978, 104(1): 21–25. https://doi.org/10.21273/JASHS.104.1.21.
Niu, G., and Rodriguez, D.S. Responses of growth and ion uptake of four rose rootstocks to chloride- or sulfate-dominated salinity. Journal of the American Society for Horticultural Science, 2008, 133(5): 663–669. https://doi.org/10.21273/JASHS.133.5.663.
Niu, G., Rodriguez, D.S., and Aguiniga, L. Growth and landscape performance of ten herbaceous species in response to saline water irrigation. Journal of Environmental Horticulture, 2007, 25(4): 204–210. https://doi.org/10.24266/0738-2898-25.4.204.
Niu, G., Starman, T., and Byrne, D. Responses of growth and mineral nutrition of garden roses to saline water irrigation. Hort Science, 2013, 48(6): 756–761. https://doi.org/10.21273/HORTSCI.48.6.756.
Ottander, C., Campbell, D., and Oquist, G. Seasonal reorganization of photosystem II and pigment composition in Pinus sylvestris. In: Mathis, P. (Ed.), Photosynthesis: From Light to Biosphere, Vol. IV. Kluwer Academic Publishers, 1995, pp. 877–880. https://doi.org/10.1007/978-94-011-0451-7_156.
Ouyang, L., Leus, L., De Keyser, E., and Van Labeke, M.C. Cold acclimation and deacclimation of two garden rose cultivars under controlled day length and temperature. Frontiers in Plant Science, 2020, 327: 1–10. https://doi.org/10.3389/fpls.2020.00327.
Pennycooke, J.C., Jones, M.L., and Stushnoff, C. Down-regulating α-Galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiology, 2003, 133(3): 901–909. https://doi.org/10.1104/pp.103.024554.
Perez, A.R.S. Characterizing salinity tolerance in greenhouse roses. MS Thesis, Texas A&M University, 2009.
Prasad, P.V.V., Pisipati, S.R., Momcilovic, I., and Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal of Agronomy and Crop Science, 2011, 197(6): 430–441. https://doi.org/10.1111/j.1439-037X.2011.00477.x.
Qin, X., Liu, Y., Mao, S., Li, T., Wu, H., Chu, C., and Wang, Y. Genetic transformation of lipid transfer protein encoding gene in Phalaenopsis amabilis to enhance cold resistance. Euphytica, 2014, 177(1): 33–43. http://dx.doi.org/10.1007/s10681-010-0246-4.
Rahman, M., and Hoque, M.A. Quality of flower and bulb in tuberose under saline condition. Research and Reviews: Journal of Crop Science and Technology, 2019, 7(1): 1–9.
Ranney, T.G., and Peet, M.M. Heat tolerance of five taxa of birch (Betula): Physiological responses to supra-optimal leaf temperatures. Journal of the American Society for Horticultural Science, 1994, 119(2): 243–248. https://doi.org/10.21273/JASHS.119.2.243.
Rehman, A., Riaz, R., Iqbal, M., Shafi, J., and Ahmad, W. Responses of different morphological attributes of Rosa hybrida L. cv. Kardinal to saline water irrigation. Environment and Ecology Research, 2014, 2(1): 21–26.
Rhee, H.K., and Kim, K.S. Interspecific hybridization and polyploidization in lily breeding. Acta Horticulturae, 2018, 766: 441–446. https://doi.org/10.17660/ActaHortic.2018.766.59.
Richards, R.A., Rawson, H.M., and Johnson, D.A. Glaucousness in wheat: Its development and effect on water-use efficiency, gas exchange, and photosynthetic tissue temperatures. Functional Plant Biology, 1986, 13(4): 465–473. https://doi.org/10.1071/PP9860465.
Rogers, M.N. Air pollution effects on ornamental crops. In: Ball, V. (Ed.), Ball Red Book, 14th ed., Geo. J. Ball Publishing, 1985, pp. 213–223.
Sedibe, M.M., Khetsha, Z.P., and Malebo, N. Salinity effects on external and internal morphology of rose geranium (Pelargonium graveolens L.) leaf. Life Sciences Journal, 2013, 10(1): 109–115.
Shillo, R., Ding, M., Pasternak, D., and Zaccai, M. Cultivation of cut flower and bulb species with saline water. Scientia Horticulturae, 2002, 92(1): 41–54.
Shin, H.K., Lieth, J.H., and Kim, S.H. Effects of temperature on leaf area and flower size in rose. Acta Horticulturae, 2001, 547: 185–191. https://doi.org/10.17660/ActaHortic.2001.547.22.
Siddiqui, M.H., Al-Whaibi, M.H., Firoz, M., and Al-Khaishany, M.Y. Role of nanoparticles in plants. In: Nanotechnology and Plant Sciences, Springer International Publishing, 2015, pp. 19–35. https://doi.org/10.1007/978-3-319-14502-0_2.
Smith, P.G., and Dale, J.E. The effect of root cooling and excision treatment on growth of primary leaves of Phaseolus vulgaris L. Rapid and reversible increases in abscisic acid content. New Phytologist, 1988, 110(3): 293–300. https://doi.org/10.1111/j.1469-8137.1988.tb00265.x.
Song, A., Zhu, X., Chen, F., Gao, H., Jiang, J., and Chen, S. A chrysanthemum heat shock protein confers tolerance to abiotic stress. International Journal of Molecular Sciences, 2014, 15(3): 5063–5078. https://doi.org/10.3390/ijms15035063.
Sonneveld, C., and Voogt, W. Studies on the salt tolerance of some flower crops grown under glass. Plant and Soil, 1983, 74(1): 41–52. https://doi.org/10.1007/BF02143618.
Strope, K. The effects of heat stress on flowering and vegetative growth of New Guinea impatiens (Impatiens hawkeri Bull.). MS Thesis, University of Minnesota, 1999.
Subbarao, G.V., Johansen, C., Slinkard, A.E., Rao, R.C.N., Saxena, N.P., and Chauhan, Y.S. Strategies for improving drought resistance in grain legumes. Critical Reviews in Plant Sciences, 1995, 14(6): 469–523. https://doi.org/10.1080/07352689509701933.
Sun, C.Q., Chen, F.D., Teng, N.J., Liu, Z.L., Fang, W.M., and Hou, X.L. Interspecific hybrids between Chrysanthemum grandiflorum (Ramat.) and C. indicum (L.) Des. Moul. and their drought tolerance evaluation. Euphytica, 2010, 174: 51–60. https://doi.org/10.1007/s10681-009-0117-z.
Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G. ROS and redox signaling in the response of plants to abiotic stress. Plant, Cell & Environment, 2012, 35(2): 259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x.
Taylor, A.F., Rylott, E.L., Anderson, C.W., and Bruce, N.C. Investigating the toxicity, uptake, nanoparticle formation, and genetic response of plants to gold. PLoS ONE, 2014, 9(3): e93793. https://doi.org/10.1371/journal.pone.0093793.
Terry, N.J., and Abadia, J. Function of iron in chloroplasts. Journal of Plant Nutrition, 1986, 9(3–7): 609–646. https://doi.org/10.1080/01904168609363470.
Thomas, B., and Vince-Prue, D. Photoperiodism in Plants (2nd ed., pp. 1–26). Academic Press, New York, NY, 1996.
Vaadia, Y. Plant hormones and water stress. Philosophical Transactions of the Royal Society B: Biological Sciences, 1976, 273(927): 513–522. https://doi.org/10.1098/rstb.1976.0027.
Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 2007, 61(3): 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011.
Wahome, P.K., Jesch, H.H., and Pinker, I. Effect of sodium chloride stress on Rosa plants growing in vitro. Scientia Horticulturae, 2001, 90(2): 187–191. https://doi.org/10.1016/S0304-4238(00)00231-4.
Wang, C.H., Yeh, D.M., and Sheu, C.S. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. Journal of the American Society for Horticultural Science, 2008, 133(5): 754–759. https://doi.org/10.21273/JASHS.133.6.754.
Wang, K., Wu, Y.H., Tian, X.Q., Bai, Z.Y., Liang, Q.Y., Liu, Q.L., Pan, Y.Z., Zhang, L., and Jiang, B.B. Overexpression of DgWRKY4 enhances salt tolerance in chrysanthemum seedlings. Frontiers in Plant Science, 2017, 8: 1592. https://doi.org/10.3389/fpls.2017.01592.
Warner, R.M. Genetic approaches to improve cold tolerance of petunia. American Floral Endowment: Funding Industry Solutions through Research and Education, 2010.
Warner, R.M., and Erwin, J.E. Photosynthetic responses of heat-tolerant and heat-sensitive cultivars of Impatiens hawkeri and Viola × wittrockiana to high temperature exposures. Acta Horticulturae, 2002, 580: 215–219. https://doi.org/10.17660/ActaHortic.2002.580.28.
Warner, R.M., and Erwin, J.E. High temperature developmentally reduces growth and flowering of twelve pansy cultivars. IHC Program, Toronto, Canada, 2003.
Warrington, I.J., and Stanley, C.J. Seasonal frost tolerance of some ornamental, indigenous New Zealand plant species in the genera Astelia, Dicksonia, Leptospermum, Metrosideros, Phormium, Pittosporum, and Sophora. New Zealand Journal of Experimental Agriculture, 1987, 15: 357–365. https://doi.org/10.1080/03015521.1987.10425582.
Wu, L., Guo, X., and Harivandi, A. Salt tolerance and salt accumulation of landscape plants irrigated by sprinkler and drip irrigation systems. Journal of Plant Nutrition, 2001, 24(10): 1473–1490. https://doi.org/10.1081/PLN-100106996.
Wu, S., Sun, Y., and Niu, G. Morphological and physiological responses of nine ornamental species to saline irrigation water. Hort Science, 2016, 51(3): 285–290. https://doi.org/10.21273/HORTSCI.51.3.285.
Xu, K., Hong, P., Luo, L., and Xia, T. Overexpression of AtNHX1, a vacuolar Na?/H? antiporter from Arabidopsis thaliana, in Petunia hybrida enhances salt and drought tolerance. Journal of Plant Biology, 2009, 52(5): 453–461. http://dx.doi.org/10.1007/s12374-009-9058-2.
Xu, Y., Zhao, X., Aiwaili, P., Mu, X., Zhao, M., Zhao, J., Cheng, L., Ma, C., and Gao, J. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. Plant Journal, 2020, 103(5): 1783–1795. https://doi.org/10.1111/tpj.14863.
Yang, R., Chen, M., Sun, J.C., Yu, Y., Min, D.H., Chen, J., Xu, Z.S., Zhou, Y.B., Ma, Y.Z., and Zhang, X.H. Genome-wide analysis of LIM family genes in foxtail millet (Setaria italica L.) and characterization of the role of SiWLIM2b in drought tolerance. International Journal of Molecular Sciences, 2019, 20(6): 1303. https://doi.org/10.3390/ijms20061303.
Yang, X., Luo, Y., Bai, H., Li, X., Tang, S., Liao, X., Zhang, L., and Liu, Q. DgMYB2 improves cold resistance in chrysanthemum by directly targeting DgGPX1. Horticulture Research, 2022, 9: uhab028. https://doi.org/10.1093/hr/uhab028.
Yang, Y., Ma, C., Xu, Y., Wei, Q., Imtiaz, M., Lan, H., Gao, S., Cheng, L., Wang, M., Fei, Z., and Hong, B. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell, 2014, 26(5): 2038–2054. https://doi.org/10.1105/tpc.114.124867.
Zhai, L., Zhu, X., Yang, S., Gu, C., Liu, P., Song, A., Jiang, J., Guan, Z., Fang, W., Chen, F., and Chen, S. Constitutive expression of a chrysanthemum phospholipase Dα gene in Chrysanthemum morifolium enhances drought tolerance. Ornamental Plant Research, 2021, 1: 1–10. https://doi.org/10.48130/OPR-2021-0008.
Zhang, L., Xu, Y., Liu, X., Qin, M., Li, S., Jiang, T., Yang, Y., Jiang, C.Z., Gao, J., and Hong, B. The chrysanthemum DEAD-box RNA helicase CmRH56 regulates rhizome outgrowth in response to drought stress. Journal of Experimental Botany, 2022, erac213. https://doi.org/10.1093/jxb/erac213.
Zhang, T., Qu, Y., Wang, H., Wang, Z., Jiang, J., Chen, S., Fang, W., Guan, Z., Liao, Y., and Chen, F. CmSCL4 and CmR1MYB1 synergistically enhance drought tolerance by regulation of ABA signaling in chrysanthemum. Environmental and Experimental Botany, 2022, 199: 104886. https://doi.org/10.1016/j.envexpbot.2022.104886.
Zhang, W., Xu, H., Duan, X., Hu, J., Li, J., Zhao, L., and Ma, Y. Characterizing the leaf transcriptome of Chrysanthemum rhombifolium (Ling et C. Shih), a drought-resistant, endemic plant from China. Frontiers in Genetics, 2021, 12: 625985. https://doi.org/10.3389/fgene.2021.625985.
Zhu, W.Y., Jiang, J.F., Chen, S.M., Wang, L., Xu, L., Wang, H.B., Li, P.L., Guan, Z.Y., and Chen, F. Intergeneric hybrid between Chrysanthemum × morifolium and Artemisia japonica achieved via embryo rescue shows salt tolerance. Euphytica, 2013, 191(1): 109–119. https://doi.org/10.1007/s10681-013-0869-3.
![]() |
![]() |
![]() |
![]() |
![]() |