Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:1, January, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(1): 252-265
DOI: https://doi.org/10.20546/ijcmas.2025.1401.021


Navigating the Antimicrobial Resistance Crisis: A Comprehensive Review of Current Challenges and Future Directions
S. Arul Jothy and M. Prakash*
Research Department of Microbiology, Kanchi Shri Krishna College of Arts and Science, Kanchipuram, 631 551, Tamil Nadu, India
*Corresponding author
Abstract:

In this review, the growing concern towards life threatening antimicrobial resistance development in microorganisms is overviewed. There are several different types of antimicrobial medicines, including antibiotics, antivirals, antifungals, and antiparasitics. Antibiotics are medicines used to prevent and treat infectious diseases in humans and animals, as well as plants. The development of drug resistance can lead to an ineffective treatment of infections, resulting in disease spread, significant illness, disability, and death. We face an increasing threat from drug-resistant pathogens that can't be treated and threaten the ability to perform life-saving interventions, like cancer chemotherapy and caesarean sections, hip replacements, and organ transplants. As a result of the global rise in antibiotic resistance, common antibiotics are becoming ineffective in treating widespread bacterial infections. There can be complications associated with treating fungal infections, including interactions between drugs for patients suffering from other illnesses. For all these, we are in a position to use several antibiotics. In this review, a brief outline of the history of antimicrobial resistance, mechanisms of resistance development, types of antibiotics, current challenges and emergence of antibiotic resistant microorganisms are summarized.


Keywords: Drug resistance, Antimicrobial agents, Antibiotics, E. coli, Staphylococcus aureus


References:

Agbo, M.C., Ezeonu, I.M., Onodagu, B.O., Ezeh, C.C., Ozioko, C.A., Emencheta, S.C., 2024. Antimicrobial resistance markers distribution in Staphylococcus aureus from Nsukka, Nigeria. BMC Infect. Dis. 24, 320. https://doi.org/10.1186/s12879-024-09126-1

Al Kadri, H.M., El-Metwally, A.A., Al Sudairy, A.A., Al-Dahash, R.A., Al Khateeb, B.F., Al Johani, S.M., 2024. Antimicrobial resistance among pregnant women with urinary tract infections is on rise: Findings from meta-analysis of observational studies. J. Infect. Public Health 17, 102467. https://doi.org/10.1016/j.jiph.2024.05.055

Alemayehu, T., Ali, M., Mitiku, E., Hailemariam, M., 2019. The burden of antimicrobial resistance at tertiary care hospital, southern Ethiopia: a three years’ retrospective study. BMC Infect. Dis. 19, 585. https://doi.org/10.1186/s12879-019-4210-1

Anning, A.S., Baah, E., Buabeng, S.D., Baiden, B.G., Aboagye, B., Opoku, Y.K., Afutu, L.L., Ghartey-Kwansah, G., 2022. Prevalence and antimicrobial resistance patterns of microbes isolated from individuals attending private diagnostic centre in Cape Coast Metropolis of Ghana. Sci. Rep. 12, 14282. https://doi.org/10.1038/s41598-022-18595-w

Asai, N., Sakanashi, D., Suematsu, H., Kato, H., Hagihara, M., Watanabe, H., Shiota, A., Koizumi, Y., Yamagishi, Y., Mikamo, H., 2021. Clinical characteristics and relevance of coagulase-negative Staphylococci other than S. epidermidis by positive blood culture. J. Microbiol. Immunol. Infect. 54, 632–638. https://doi.org/10.1016/j.jmii.2020.03.001

Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U., Salamat, M.K.F., Baloch, Z., 2018. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. Volume 11, 1645–1658. https://doi.org/10.2147/IDR.S173867

Beyene, D., Bitew, A., Fantew, S., Mihret, A., Evans, M., 2019. Multidrug-resistant profile and prevalence of extended spectrum β-lactamase and carbapenemase production in fermentative Gram-negative bacilli recovered from patients and specimens referred to National Reference Laboratory, Addis Ababa, Ethiopia. PLoS One 14, e0222911. https://doi.org/10.1371/journal.pone.0222911

Beyene, T., Hayishe, H., Gizaw, F., Beyi, A.F., Abunna, F., Mammo, B., Ayana, D., Waktole, H., Abdi, R.D., 2017. Prevalence and antimicrobial resistance profile of Staphylococcus in dairy farms, abattoir and humans in Addis Ababa, Ethiopia. BMC Res. Notes 10, 171. https://doi.org/10.1186/s13104-017-2487-y

Bitew, A., 2018. Multi-drug resistance profile of bacteria isolated from blood stream infection at Tikur anbessa specialized hospital, Addis Ababa, Ethiopia. EC Microbiol 14, 119–126.

Byarugaba, D.K., Kisame, R., Olet, S., 2011. Multi-drug resistance in commensal bacteria of food of animal origin in Uganda. Afr J Microbiol Res 5, 1539–1548.

C Reygaert, W., 2018. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4, 482–501. https://doi.org/10.3934/microbiol.2018.3.482

Devanshi, S. and Lakshmi, D.B., 2020. The Antibiotic Resistance Crisis - An Indian Perspective. Int. J. Bus. Manag. Res. 8, 112–116. https://doi.org/10.37391/IJBMR.080404

Di Martino, P., 2022. Antimicrobial agents and microbial ecology. AIMS Microbiol. 8, 1–4. https://doi.org/10.3934/microbiol.2022001

Dixit, A., Kumar, N., Kumar, S., Trigun, V., 2019. Antimicrobial resistance: Progress in the decade since emergence of New Delhi metallo-β-lactamase in India. Indian J. Community Med. 44, 4. https://doi.org/10.4103/ijcm.IJCM_217_18

Donlan, R.M. and Costerton, J.W., 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002

Dyar, O.J., Huttner, B., Schouten, J., Pulcini, C., 2017. What is antimicrobial stewardship? Clin. Microbiol. Infect. 23, 793–798. https://doi.org/10.1016/j.cmi.2017.08.026

Fromer, D.L., Cheng, W.Y., Gao, C., Mahendran, M., Hilts, A., Duh, M.S., Joshi, A. V., Mulgirigama, A., Mitrani-Gold, F.S., 2024. Likelihood of antimicrobial resistance in urinary E. coli isolates among US female patients with recurrent versus non-recurrent UTI. Urology 190, 1–10. https://doi.org/10.1016/j.urology.2024.02.047

Gach, M.W., Lazarus, G., Simadibrata, D.M., Sinto, R., Saharman, Y.R., Limato, R., Nelwan, E.J., van Doorn, H.R., Karuniawati, A., Hamers, R.L., 2024. Antimicrobial resistance among common bacterial pathogens in Indonesia: a systematic review. Lancet Reg. Heal. - Southeast Asia 26, 100414. https://doi.org/10.1016/j.lansea.2024.100414

Gashe, F., Mulisa, E., Mekonnen, M., Zeleke, G., 2018. Antimicrobial Resistance Profile of Different Clinical Isolates against Third-Generation Cephalosporins. J. Pharm. 2018, 1–7. https://doi.org/10.1155/2018/5070742

Gebreyes, W.A., Thakur, S., Morgan Morrow, W.E., 2006. Comparison of Prevalence, Antimicrobial Resistance, and Occurrence of Multidrug-Resistant Salmonella in Antimicrobial-Free and Conventional Pig Production. J. Food Prot. 69, 743–748. https://doi.org/10.4315/0362-028X-69.4.743

Giri, K., Gurung, S., Subedi, S., Singh, A., Adhikari, N., 2019. Antibiotic Susceptibility Pattern of Bacterial Isolates from Soft Tissues Infection among Patients Visiting Birendra Military Hospital, Chhauni, Kathmandu. Tribhuvan Univ. J. Microbiol. 6, 119–126. https://doi.org/10.3126/tujm.v6i0.26595

Guzmán Ramos, P.J., Shiel, R.E., Fernández Pérez, C., Ríos Boeta, A.M., Perlado Chamizo, M.R., Ballester Aguado, J.I., Ruiz Duro, N., Ortiz?Díez, G., 2021. Antimicrobial resistance increased over an 8?year period in Enterobacteriaceae cultured from canine urine samples. J. Small Anim. Pract. 62, 279–285. https://doi.org/10.1111/jsap.13291

Hameed, S., Ahmad, S.R., Rahman, M.A. ur, Nazir, H., Ullah, I., 2019. Drug resistance profile of Mycobacterium tuberculosis and predictors associated with the development of drug resistance. J. Glob. Antimicrob. Resist. 18, 155–159. https://doi.org/10.1016/j.jgar.2019.03.009

Huang, Y., Wen, Y., Jia, Q., Wang, L., Cheng, Q., Liu, W., Huang, T., Xie, L., 2020. Genome analysis of a multidrug-resistant Streptococcus sanguis isolated from a throat swab of a child with scarlet fever. J. Glob. Antimicrob. Resist. 20, 1–3. https://doi.org/10.1016/j.jgar.2019.10.029

Hunt, D., Kates, O.S., 2024. A Brief History of Antimicrobial Resistance. AMA J. Ethics 26, E408-417. https://doi.org/10.1001/amajethics.2024.408

Jan, N., Meshram, S.U., Kulkarni, A., 2009. Plasmid profile analysis of multidrug resistant E. coli isolated from UTI patients of Nagpur City, India. Rom. Biotechnol. Lett. 14, 4635–4640.

Jansen, K.U. and Anderson, A.S., 2018. The role of vaccines in fighting antimicrobial resistance (AMR). Hum. Vaccin. Immunother. 14, 2142. https://doi.org/10.1080/21645515.2018.1476814

Jayatilleke, K. and Bandara, P., 2012. Antibiotic sensitivity pattern of Staphylococcus aureus in a tertiary care hospital of Sri Lanka. Sri Lankan J. Infect. Dis. 2, 13. https://doi.org/10.4038/sljid.v2i2.4162

Kabra, R., Chauhan, N., Kumar, A., Ingale, P., Singh, S., 2019. Efflux pumps and antimicrobial resistance: Paradoxical components in systems genomics. Prog. Biophys. Mol. Biol. 141, 15–24. https://doi.org/10.1016/j.pbiomolbio.2018.07.008

Kadariya, J., Thapaliya, D., Bhatta, S., Mahatara, R.L., Bempah, S., Dhakal, N., Smith, T.C., 2019. Multidrug-resistant Staphylococcus aureus Colonization in Healthy Adults Is more Common in Bhutanese Refugees in Nepal than Those Resettled in Ohio. Biomed Res. Int. 2019, 1–11. https://doi.org/10.1155/2019/5739247

Kaniyarakkal, V., Variamkandi, S.B., George, K., 2021. Microbiological Profile of Significant Multi-Drug Resistant Organisms Isolated in a Tertiary Care Centre, Kerala, India. Int. J. Res. Rev. 8, 404–411. https://doi.org/10.52403/ijrr.20210550

Kariuki, S., Revathi, G., Kiiru, J., Lowe, B., Berkley, J.A., Hart, C.A., 2006. Decreasing prevalence of antimicrobial resistance in non-typhoidal Salmonella isolated from children with bacteraemia in a rural district hospital, Kenya. Int. J. Antimicrob. Agents 28, 166–171. https://doi.org/10.1016/j.ijantimicag.2006.05.026

Keighley, C., van Oijen, A.M., Brentnall, S.J., Sanderson-Smith, M., Newton, P., Miyakis, S., 2022. Multi-year antimicrobial-resistance trends in urine Escherichia coli isolates from both community-based and hospital-based laboratories of an Australian local health district. J. Glob. Antimicrob. Resist. 31, 386–390. https://doi.org/10.1016/j.jgar.2022.11.008

Kong BoonHong, K.B., Yasmin Abu Hanifah, Y.A.H., Mohd Yasim, M., Thong KwaiLin, T.K., 2011. Antimicrobial susceptibility profiling and genomic diversity of multidrug-resistant Acinetobacter baumannii isolates from a teaching hospital in Malaysia. Jpn. J. Infect. Dis. 64, 337–340.

Kourkouta, L., Koukourikos, K., Iliadis, C., Plati, P., Dimitriadou, A., 2018. History of antibiotics. Sumerianz J. Med. Healthc. 1, 51–54.

Llor, C. and Bjerrum, L., 2014. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 5, 229–241. https://doi.org/10.1177/2042098614554919

Luyt, C.-E., Bréchot, N., Trouillet, J.-L., Chastre, J., 2014. Antibiotic stewardship in the intensive care unit. Crit. Care 18, 480. https://doi.org/10.1186/s13054-014-0480-6

Maboni, G., Seguel, M., Lorton, A., Sanchez, S., 2020. Antimicrobial resistance patterns of Acinetobacter spp. of animal origin reveal high rate of multidrug resistance. Vet. Microbiol. 245, 108702. https://doi.org/10.1016/j.vetmic.2020.108702

Marchionatti, E., Kittl, S., Sendi, P., Perreten, V., 2024. Whole genome-based antimicrobial resistance, virulence, and phylogenetic characteristics of Trueperella pyogenes clinical isolates from humans and animals. Vet. Microbiol. 294, 110102. https://doi.org/10.1016/j.vetmic.2024.110102

Martínez-Vázquez, A.V., Guardiola-Avila, I.B., Flores-Magallón, R., Rivera, G., Bocanegra-García, V., 2021. Detection of multi-drug resistance and methicillin-resistant Staphylococcus aureus (MRSA) isolates from retail meat in Tamaulipas, Mexico. Ann. Microbiol. 71, 16. https://doi.org/10.1186/s13213-021-01627-7

Masyeni, S., Sukmawati, H., Savitri Siskayani, A., Dharmayanti, S., Sari, K., 2018. Antimicrobial Susceptibility Pattern of Pathogens Isolated from Various Specimens in Denpasar-Bali: A Two Years Retrospective Study. Biomed. Pharmacol. J. 11, 493–502. https://doi.org/10.13005/bpj/1399

Meroni, G., Soares Filipe, J.F., Drago, L., Martino, P.A., 2019. Investigation on Antibiotic-Resistance, Biofilm Formation and Virulence Factors in Multi Drug Resistant and Non Multi Drug Resistant Staphylococcus pseudintermedius. Microorganisms 7, 702. https://doi.org/10.3390/microorganisms7120702

Mnyambwa, N.P., Mahende, C., Wilfred, A., Sandi, E., Mgina, N., Lubinza, C., Kahwa, A., Petrucka, P., Mfinanga, S., Ngadaya, E., Kimaro, G., 2021. Antibiotic Susceptibility Patterns of Bacterial Isolates from Routine Clinical Specimens from Referral Hospitals in Tanzania: A Prospective Hospital-Based Observational Study. Infect. Drug Resist. Volume 14, 869–878. https://doi.org/10.2147/IDR.S294575

Mudenda, S., Malama, S., Munyeme, M., Matafwali, S.K., Kapila, P., Katemangwe, P., Mainda, G., Mukubesa, A.N., Hadunka, M.A., Muma, J.B., 2023. Antimicrobial resistance profiles of Escherichia coli isolated from laying hens in Zambia: implications and significance on one health. JAC-Antimicrobial Resist. 5. https://doi.org/10.1093/jacamr/dlad060

Nsofor, A., 2013. Antibiotic resistance profile of Escherichia coli isolated from five major geopolitical zones of Nigeria. J. Bacteriol. Res. 5, 29–34. https://doi.org/10.5897/JBR2012.035

Odugbemia, T., 2007. Multidrug resistance in E. coli 0157 strains and the public health implication. Science (80-.). 3, 22–33.

Pedroso, S.H.S.P., Sandes, S.H.C., Filho, R.A.T., Nunes, A.C., Serufo, J.C., Farias, L.M., Carvalho, M.A.R., Bomfim, M.R.Q., Santos, S.G., 2018. Coagulase-Negative Staphylococci Isolated from Human Bloodstream Infections Showed Multidrug Resistance Profile. Microb. Drug Resist. 24, 635–647. https://doi.org/10.1089/mdr.2017.0309

Prestinaci, F., Pezzotti, P., Pantosti, A., 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109, 309–318. https://doi.org/10.1179/2047773215Y.0000000030

Rafiq, K., Islam, M.R., Siddiky, N.A., Samad, M.A., Chowdhury, S., Hossain, K.M.M., Rume, F.I., Hossain, M.K., Mahbub-E-Elahi, A., Ali, M.Z., Rahman, M., Amin, M.R., Masuduzzaman, M., Ahmed, S., Ara Rumi, N., Hossain, M.T., 2022. Antimicrobial Resistance Profile of Common Foodborne Pathogens Recovered from Livestock and Poultry in Bangladesh. Antibiotics 11, 1551. https://doi.org/10.3390/antibiotics11111551

Rather, I.A., Kim, B.-C., Bajpai, V.K., Park, Y.-H., 2017. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi J. Biol. Sci. 24, 808–812. https://doi.org/10.1016/j.sjbs.2017.01.004

Ronald, C., Matofari, J.W., Nduko, J.M., 2023. Antimicrobial resistance of E. coli strains in ready-to-eat red meat products in Nakuru County, Kenya. The Microbe 1, 100022. https://doi.org/10.1016/j.microb.2023.100022

Salah, I., Parkin, I.P., Allan, E., 2021. Copper as an antimicrobial agent: recent advances. RSC Adv. 11, 18179–18186. https://doi.org/10.1039/D1RA02149D

Salem-Bekhit, M., Moussa, I., Muharram, M., Alanazy, F., Hefni, H., 2012. Prevalence and antimicrobial resistance pattern of multidrug-resistant Enterococci isolated from clinical specimens. Indian J. Med. Microbiol. 30, 44–51. https://doi.org/10.4103/0255-0857.93032

Shoja, S., Ghasemi, S., Dastranj, M., Shamseddin, J., Ebrahimi, N., Alizade, H., Farahani, A., 2023. Characterization of genotypes and antimicrobial resistance profiles of clinical isolates of Shigella from patients in the southern region of Iran. Eur. J. Med. Res. 28, 611. https://doi.org/10.1186/s40001-023-01570-0

Shrestha, L.B., Baral, R., Khanal, B., 2019. Comparative study of antimicrobial resistance and biofilm formation among Gram-positive uropathogens isolated from community-acquired urinary tract infections and catheter-associated urinary tract infections. Infect. Drug Resist. Volume 12, 957–963. https://doi.org/10.2147/IDR.S200988

Tano, Z.N., Kobayashi, R.K., Candido, E.P., Dias, J.B., Perugini, L.F., Vespero, E.C., Pavanelli, W.R., 2022. Susceptibility to first choice antimicrobial treatment for urinary tract infections to Escherichia coli isolates from women urine samples in community South Brazil. Brazilian J. Infect. Dis. 26, 102366. https://doi.org/10.1016/j.bjid.2022.102366

Tawyabur, M., Islam, M.S., Sobur, M.A., Hossain, M.J., Mahmud, M.M., Paul, S., Hossain, M.T., Ashour, H.M., Rahman, M.T., 2020. Isolation and Characterization of Multidrug-Resistant Escherichia coli and Salmonella spp. from Healthy and Diseased Turkeys. Antibiotics 9, 770. https://doi.org/10.3390/antibiotics9110770

Tickler, I.A., dela Cruz, C.M., Obradovich, A.E., Goering, R.V., Dewell, S., Le, V.M., Tenover, F.C., Anderson, J., Banaei, N., Bankowski, M., Dill, J.L., Harrington, A.T., Henthorne, M.A., Klutts, J.S., Koyamatsu, T., Overcast, R., Rekasius, V.J., Rojtman, A., 2020. Presence of Clostridioides difficile and multidrug-resistant healthcare-associated pathogens in stool specimens from hospitalized patients in the USA. J. Hosp. Infect. 106, 179–185. https://doi.org/10.1016/j.jhin.2020.07.003

Valeeva, L.R., Pudova, D.S., Khabipova, N.N., Shigapova, L.H., Shagimardanova, E.I., Rogov, A.M., Tagirova, T.R., Gimadeev, Z.G., Sharipova, M.R., 2023. The dataset on the draft whole-genome sequences of two Pseudomonas aeruginosa strains isolated from urine samples of patients with urinary tract diseases. Data Br. 51, 109704. https://doi.org/10.1016/j.dib.2023.109704

Wu, H., Wang, M., Liu, Y., Wang, X., Wang, Y., Lu, J., Xu, H., 2016. Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int. J. Food Microbiol. 232, 95–102. https://doi.org/10.1016/j.ijfoodmicro.2016.06.001

Zaman, T. uz, Alrodayyan, M., Albladi, M., Aldrees, M., Siddique, M.I., Aljohani, S., Balkhy, H.H., 2018. Clonal diversity and genetic profiling of antibiotic resistance among multidrug/carbapenem-resistant Klebsiella pneumoniae isolates from a tertiary care hospital in Saudi Arabia. BMC Infect. Dis. 18, 205. https://doi.org/10.1186/s12879-018-3114-9

Download this article as Download

How to cite this article:

Arul Jothy, S. and Prakash, M. 2025. Navigating the Antimicrobial Resistance Crisis: A Comprehensive Review of Current Challenges and Future Directions.Int.J.Curr.Microbiol.App.Sci. 14(1): 252-265. doi: https://doi.org/10.20546/ijcmas.2025.1401.021
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations