Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:1, January, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(1): 193-203
DOI: https://doi.org/10.20546/ijcmas.2025.1401.016


Modulating Gut Fermentation: A Novel Approach to Managing Hypertension and Modulation of Gut Fermentation
Pt RSS PG College, Fatehpur, UP, India
*Corresponding author
Abstract:

The cardiovascular disease is mounting a serious scientific and public concern, as it is responsible for 30% (17.3 million) of deaths annually, foremost among non-communicable diseases. For those living with the disease, quality of life is impacted by a significant number of having an associated disability. Presently, the treatment of hypertension is accompanied by the application of agents that act on the angiotensin system. This type of treatment has its implications, as exclusively reported by the various workers. However, the main concern of this review is to draw a different line of a treatment plan that should be based on remediation for causal agents of hypertension rather than working on the artificial reduction of blood osmotic potential. It is observed from the review of available literature that the modulation of gut flora and reducing the duration of fermentation in the gut could be effective in the reduction of hypertension. So far, it has now been successfully established that gut fermentation, especially protein fermentation, extensively affects the homeostasis of the gut-liver axis, allowing thereby the entry of unwanted compounds into the liver, which in a later course, blood too. Therefore, modulation of gut microbiota could help rectify the problem of leaky gut.


Keywords: hypertension, gut intoxication, Gut Liver Axis, leaky gut, gut microbiota, SCFA, probiotics


References:

Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM Jr, Durgan DJ: Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. (2017) 1, 49(2): 96-104. https://doi.org/10.1152/physiolgenomics.00081.2016

Alverdy J C, Chang E B (2008): The re-emerging role of the intestinal microflora in critical illness and inflammation: Why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol 83:461–466. https://doi.org/10.1189/jlb.0607372

Bernd Schnabl and David A. Brenner (2014): Interactions Between the Intestinal Microbiome and Liver Diseases; Gastroenterology: 146, (6):1513–1524 https://doi.org/10.1053/j.gastro.2014.01.020

Boodeker, D. A. Winkler and H. Holer: (1990) Ammonia absorption from the isolated reticulo-rumen of sheep; Experimental Physiology, 75, 587-595. https://doi.org/10.1113/expphysiol.1990.sp003434

Bouchard Ch: Lectures on Auto-Intoxication in diseases Or Self-Poisoning of the Individual (reprint in 1917); Pub by Forgotten Books. (1887) Pp 102-216

Carding Simon, Kristin Verbeke, Daniel T. Vipond, Bernard M. Corfe, and Lauren J. Owen: Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. (2015) 26: 26191: 1-9. https://doi.org/10.3402/mehd.v26.26191

Carlotta De Filippo, Duccio Cavalieri, Monica Di Paola, Matteo, Ramazzotti, Jean Baptiste Poullet, Sebastien Massart, Silvia Collini, Giuseppe Pieraccini, and Paolo Lionetti (2010): Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa; PMAS 107 (33): 14691–14696 https://doi.org/10.1073/pnas.1005963107

Caroline I. Le Roy, Jelena Štšepetova, E, E Songi, Sandrine P. Claus, and Marika Mikelsaar: New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay. (2015) Oncotarget: 6(31): 30545–30556. https://doi.org/10.18632/oncotarget.5906

Choa Takashi, Kuda Takahiro, Yazaki Hajime Takahashi and Bon Kimura: Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal Applied Microbiology and Biotechnology; (2014) 98 (6), 2779–2787. https://doi.org/10.1007/s00253-013-5271-5

Cluny I. NL, Reimer RA, Sharkey KA (2012): Cannabinoid signalling regulates inflammation and energy balance: the importance of the brain-gut axis. Brain Behav Immun. 26(5):691-8. https://doi.org/10.1016/j.bbi.2012.01.004

Comparea D., P. Coccolia, A. Roccoa, O. M.Nardonea, S. De Maria, M. Cartenì and G. Nardonea: Gut–liver axis: The impact of gut microbiota on nonalcoholic fatty liver disease; Nutrition, Metabolism and Cardiovascular Diseases (2012): 22 (6), 471-476

Cowana Theres E., Marie S. A. Palmnäs Jaeun Yang Marc R. Bomhof Kendra L. Ardell Raylene A. Reimer Hans J. Vogel, and Jane Shearer: Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics (2014), The Journal of Nutritional Biochemistry; 25(4), 489-495. https://doi.org/10.1016/j.jnutbio.2013.12.009

de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira LEVV, Cesar DE, Moreira APB (2018): Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr.; 57(3):861-876. https://doi.org/10.1007/s00394-017-1524-x

del Bas J M, M Guirro, N Boqué, A Cereto, R Ras, A Crescenti, A Caimari, N Canela & L Arola: Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host (2018): International Journal of Obesity 42, 746–754. https://doi.org/10.1038/ijo.2017.284

Dumas E M E, Barton R H, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy M I, Scott J, Gauguier D, Nicholson J K (2006): Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. PNAS U S A. 2006 Aug 15; 103(33):12511-6. https://doi.org/10.1073/pnas.0601056103

Evans J M, Morris LS, and Marchesi JR.: The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol. 2013 218(3): 37-47 https://doi.org/10.1530/joe-13-0131

Fasano C. A (2011): Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 91(1):151-75. https://doi.org/10.1152/physrev.00003.2008

Felix Sommer, Intawat Nookaew, Nina Sommer, Per Fogelstrand, and Fredrik Bäckhed: Site-specific programming of the host epithelial transcriptome by the gut microbiota: Genome Biol. (2015); 16(1): 62. https://doi.org/10.1186/s13059-015-0614-4

Frank DN, Allison L. St. Amand, Robert A. Feldman, Edgar C. Boedeker, Noam Harpaz, and Norman R. Pace (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104: 13780–13785. https://doi.org/10.1073/pnas.0706625104

Fredrik Bäckhed, Ruth E. Ley, Justin L. Sonnenburg, Daniel A. Peterson, Jeffrey I. Gordon (2005): Host-Bacterial Mutualism in the Human Intestine Science; 307, (5717), 1915-1920. https://doi.org/10.1126/science.1104816

Fuchs M G. (2012): Non-alcoholic Fatty liver disease: the bile Acid-activated farnesoid x receptor as an emerging treatment target. J Lipids. (2012):934396. https://doi.org/10.1155/2012/934396

Fulgencio Saura-Calixto, c, José Serranob, c, Isabel Goñib, (2007): Intake and bioaccessibility of total polyphenols in a whole diet; Food Chemistry: 101 (2) 492–501 http://dx.doi.org/10.1016/j.foodchem.2006.02.006

Gómez-Guzmán M, Toral M, Romero M, Jiménez R, Galindo P, Sánchez M, Zarzuelo MJ, Olivares M, Gálvez J, Duarte J. (2015): Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res. 59(11):2326-36. https://doi.org/10.1002/mnfr.201500290

Guarner, F and Malagelada, J (2003). "Gut flora in health and disease". The Lancet 361 (9356): 512–19. https://doi.org/10.1016/s0140-6736(03)12489-0

Guoxiang Xie, Shucha Zhang Xiaojiao Zheng Wei Jia: Metabolomics approaches for characterizing metabolic interactions between host and its commensal microbes. Electrophoresis- 2013: 34 (19); 2787-2798. https://doi.org/10.1002/elps.201300017

Henderickx, H. and Decuypere, J. (1973). In Germfree Research, pp. 361-368 [J. B. Heneghan, editor]. New York and London: Academic Press.

Honour J.: The possible involvement of intestinal bacteria in steroidal hypertension. Endocrinology, (1982): 110(1): 285-7. https://doi.org/10.1210/endo-110-1-285

Ilan B. Y (2012): Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis. World J Gastroenterol.; 18(21):2609-18. https://doi.org/10.3748/wjg.v18.i21.2609

Jaana Hartiala, Brian J. Bennett, W. H. Wilson Tang, Zeneng Wang, Alexandre F. R. Stewart, Robert Roberts, Ruth McPherson, Aldons J. Lusis, Stanley L. Hazen, and Hooman Allayee,: Comparative Genome-Wide Association Studies in Mice and Humans for Trimethylamine N-oxide, a Pro-Atherogenic Metabolite of Choline and L-Carnitine: Arterioscler Thromb Vasc Biol. (2014); 34(6): 1307–1313. https://doi.org/10.1161/atvbaha.114.303252

James P. R. Connolly, Sabrina L. Slater, Nicky O’Boyle, Robert J. Goldstone, Valerie F. Crepin, David Ruano-Gallego, Pawel Herzyk, David G. E. Smith, Gillian R. Douce, Gad Frankel & Andrew J. Roe (2018): Host-associated niche metabolism controls enteric infection through fine-tuning the regulation of type 3 secretion Nature Communications 9, Art No: 4187

Jeremy K. Nicholson, Elaine Holmes, James Kinross, Remy Burcelin, Glenn Gibson, Wei Jia, Sven Pettersson (2012): Science 08 336, (6086), 1262-1267 https://doi.org/10.1126/science.1223813

Jernberg C, Lofmark S, Edlund C, Jansson J K (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66. https://doi.org/10.1038/ismej.2007.3

Jones B V, Begley M, Hill C, Gahan C G, Marchesi JR (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105:13580–13585. https://doi.org/10.1073/pnas.0804437105

Karbach Susanne H., Tanja Schönfelder, Ines Brandão, Eivor Wilms, Nives Hörmann, Sven Jäckel, Rebecca Schüler, Stefanie Finger, Maike Knorr, Jeremy Lagrange, Moritz Brandt, Ari Waisman, Sabine Kossmann, Katrin Schäfer, Thomas Münzel, Christoph Reinhardt, and Philip Wenzel: Gut Microbiota Promote Angiotensin II–Induced Arterial Hypertension and Vascular Dysfunction (2016): 5(9) :e003698. https://doi.org/10.1161/jaha.116.003698

Karen Windey, Vicky De Preter and Kristin Verbeke (2012): Relevance of protein fermentation to gut health; Issue Molecular Nutrition and Food Research; 56(1), 184–196 https://doi.org/10.1002/mnfr.201100542

Kawase M, Hashimoto H, Hosoda M, Morita H, Hosono A.: Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J Dairy Sci. (2000): 83(2): 255-63. https://doi.org/10.3168/jds.s0022-0302(00)74872-7

Kenneth Todar (2012). "The Normal Bacterial Flora of Humans". Todar's Online Textbook of Bacteriology. Retrieved Jan 1, 2019.

Kim, Seungbum, Wang, Gary, Lobaton, Gilberto; Li, Eric; Yang, Tao, Raizada, Mohan: OS 05-10 the Microbial metabolite, Butyrate attenuated Angiotensin-II Induced hypertension and Dysbiosis (2016): Journal of Hypertension: (2016) 34, 60–61. https://doi.org/10.1097/01.hjh.0000500010.38755.52

Kumar Manish, Boyang Jia, Parizad Babaei, Promi Dasa, Dimitr Lapp Girij, Ramakrishnan, Todd E. Fox, Rashidu Haqueg, William A., Petrie Fredrik, Bäckhed, and Jens Nielsen: Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling (2018), Metabolic Engineering, 49, 128-142

Laparra, J. M., Y. Sanz (2010): Interactions of gut microbiota with functional food components and nutraceuticals; Nutraceuticals and Functional Foods Pharmacological Research 61(3); 219–225 https://doi.org/10.1016/j.phrs.2009.11.001

Lawrence A. David, Corinne F. Maurice, Rachel N. Carmody, David B. Gootenberg, Julie E. Button, Benjamin E. Wolfe, Alisha V. Ling, A. Sloan Devlin, Yug Varma, Michael A. Fischbach, Sudha B. Biddinger, Rachel J. Dutton, and Peter J. Turnbaugh (2014): Diet rapidly and reproducibly alters the human gut microbiome; Nature. 505(7484): 559–563. https://doi.org/10.1038/nature12820

Luisa F. Gomez-Arango, Helen L. Barrett, H. David McIntyre, Leonie K. Callaway, Mark Morrison, and Marloes Dekker Nitert: Increased Systolic and Diastolic Blood Pressure Is Associated with Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy (2016): 68(16). 974–981. https://doi.org/10.1161/hypertensionaha.116.07910

Macfarlane G T, Gibson G R, Beatty E and Cummings J H (1992) Estimation of SCFA production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiology Ecology 101, 81–88. https://doi.org/10.1111/j.1574-6968.1992.tb05764.x

Macfarlane G T and Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health J AOAC Int. 95(1):50-60. http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane

Macfarlane GT, Macfarlane S. (1997): Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl.; 222: 3-9. https://doi.org/10.1080/00365521.1997.11720708

Macfarlane GT, Macfarlane S. (2011) Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 45 Suppl: S120-7. https://doi.org/10.1097/mcg.0b013e31822fecfe

Mathias Manon: (2018): Autointoxication and historical precursors of the microbiome–gut–brain axis. Microbial Ecology in Health and Disease; 29 https://doi.org/10.1080/16512235.2018.1548249

McDonald, I. W. (1948): The absorption of ammonia from the rumen of the sheep: Biochem J. 42(4): 584–587. https://doi.org/10.1042/bj0420584

Mell B, Jala V R, Mathew A V, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B.: Evidence for a link between gut microbiota and hypertension in the Dahl rat. (2015): Physiol Genomics.; 47(6): 187-97. https://doi.org/10.1152/physiolgenomics.00136.2014

Michael A. Mahowald, Federico E. Rey, Henning Seedorf, Aye Wollam, et.al. and Jeffrey I. Gordona (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla; PNAS, 106 (14) 5859 –5864 https://doi.org/10.1073/pnas.0901529106

Min Y W and Rhee P L. The Role of Microbiota on the Gut Immunology. Clin Ther. (2015); 37(5): 968-75. https://doi.org/10.1016/j.clinthera.2015.03.009

Monica M. Santisteban, Yanfei Qi, Jasenka Zubcevic, Seungbum Kim, Tao Yang, Vinayak Shenoy, Colleen T. Cole-Jeffrey, Gilberto O. Lobaton, Daniel C. Stewart, Andres Rubiano et al.,: Hypertension-Linked Pathophysiological Alterations in the Gut (2017): Circulation Research; 120 :312–323. https://doi.org/10.1161/circresaha.116.309006

Nagpal R, M. Kumar, A.K. Yadav, R. Hemalatha, H. Yadav, F. Marotta, Y. Yamashiro: Gut microbiota in health and disease: an overview focused on metabolic inflammation. Beneficial Microbes (2015): 7 (2): 181–194 https://doi.org/10.3920/bm2015.0062

Noverr MC, Noggle RM, Toews GB, Huffnagle GB (2004) Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 72:4996–5003. https://doi.org/10.1128/iai.72.9.4996-5003.2004

Oscar Ramírez-Pérez, Vania Cruz-Ramón, Paulina, Chinchilla-López and Nahum Méndez-Sánchez (2017): The Role of the Gut Microbiota in Bile Acid Metabolism; Annals of Hepatology, 16(1); S21-S26 https://doi.org/10.5604/01.3001.0010.5672

Pamela Vernocchi, Federica Del Chierico and Lorenza Putignani: Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health (2016) Front. Microbiol, 7(1144), 1-21. https://doi.org/10.3389/fmicb.2016.01144

Pietro Vajro, Giulia Paolella, and Alessio Fasano (2013): Microbiota and Gut-Liver Axis: A Mini-review on their influence on obesity and obesity related liver disease, J Pediatr Gastroenterol Nutr. May; 56(5): 461–468. https://doi.org/10.1097/mpg.0b013e318284abb5

Pluznick JL, Protzko R J, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J, and Caplan MJ.: Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. (2013); 110(11): 4410-15. https://doi.org/10.1073/pnas.1215927110

Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ: Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension - A case report. Int J Cardiol. (2015): 15(201), 157-8 https://doi.org/10.1016/j.ijcard.2015.07.078

Quigley E M: Gut bacteria in health and disease. Gastroenterol Hepatol (N Y). 2013; 9(9): 560-69.

Ridlon J M, Kang D J, Hylemon P B (2006) Bile salt bio-transformations by human intestinal bacteria. J Lipid Res 47: 241–259. https://doi.org/10.1194/jlr.r500013-jlr200

Santacruz A., M. C. Collado, L. García-Valdés, M. T. Segura, J. A. Martín-Lagos, T. Anjos, M. Martí-Romero, R. M. Lopez, J. Florido, C. Campoy and Y. Sanz: Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women; 104, (114) 2010, 83-92. https://doi.org/10.1017/s0007114510000176

Schilderink R, Verseijden C, de Jonge W J (2013): Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol. 2013; 4():226. https://doi.org/10.3389/fimmu.2013.00226

Sears, Cynthia L. (2005). "A dynamic partnership: Celebrating our gut flora". Anaerobe 11 (5): 247–51. https://doi.org/10.1016/j.anaerobe.2005.05.001

Setchell K D: Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones (1998): The American Journal of Clinical Nutrition, 68 (6), 1333–1346. https://doi.org/10.1093/ajcn/68.6.1333s

Sharkey K A, Savidge T C.: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci. (2014): 181:94-106 https://doi.org/10.1016/j.autneu.2013.12.006

Sharma R K, Yang T, Oliveira A C, Lobaton G O, Aquino V, Kim S, Richards E M, Pepine C J, Sumners C, Raizada M K. (2019): Microglial Cells Impact Gut Microbiota and Gut Pathology in Angiotensin II-Induced Hypertension. Circ Res.;124(5): 727-736 https://doi.org/10.1161/circresaha.118.313882

Sherwood, Linda; Willey, Joanne; Woolverton, Christopher (2013). Prescott's Microbiology (9th edn). New York: McGraw Hill. pp. 713–721.

Simon Carding, Kristin Verbeke, Daniel T. Vipond, Bernard M. Corfe, and Lauren J. Owen (2015): Dysbiosis of the gut microbiota in disease; Microb Ecol Health Dis. 26: 10.3402 https://doi.org/10.3402/mehd.v26.26191

Smith, E.A and G.T Macfarlane (1998) Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids; FEMS Microbiology Ecology; 25(4) 355–368 https://doi.org/10.1111/j.1574-6941.1998.tb00487.x

Steven R. Gill, Mihai Pop, Robert T. DeBoy, Paul B. Eckburg, Peter J. Turnbaugh, Buck S. Samuel, Jeffrey I. Gordon, David A. Relman, Claire M. Fraser-Liggett1, Karen E. Nelson (2006) Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359. https://doi.org/10.1126/science.1124234

Szabo D. G, Mandrekar P, Dolganiuc A (2007): Innate immune response and hepatic inflammation. Semin Liver Dis. 27(4):339-50. https://doi.org/10.1055/s-2007-991511

Tao Yang, Monica M. Santisteban, Vermali Rodriguez, Eric Li, Niousha Ahmari, Jessica Marulanda Carvajal, Mojgan Zadeh, Minghao Gong, Yanfei Qi, Jasenka Zubcevic, Bikash Sahay, Carl J. Pepine, Mohan K. Raizada, and Mansour Mohamadzadeh: Gut Dysbiosis is linked to Hypertension (2015): 65: 1331–1340 https://doi.org/10.1161/hypertensionaha.115.05315

Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223. https://doi.org/10.1016/j.chom.2008.02.015

Turnbaugh PJ, Peter J. Turnbaugh, Ruth E. Ley, Michael A. Mahowald, Vincent Magrini, Elaine R. Mardis and Jeffrey I. Gordon (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031 https://doi.org/10.1038/nature05414

Van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, van Velzen EJ, Gross G, Roger LC, Possemiers S, Smilde AK, Doré J, Westerhuis JA, Van de Wiele T. (2011): Metabolic fate of polyphenols in the human superorganism.Proc Natl Acad Sci U S A. 108 Suppl 1:4531-8. https://doi.org/10.1073/pnas.1000098107

Volta A. U, Bonazzi C, Bianchi FB, Baldoni AM, Zoli M, IgA antibodies to dietary antigens in liver cirrhosis. Pisi E Ric Clin Lab. 1987 Jul-Sep; 17(3):235-42. https://doi.org/10.1007/bf02912537

Wang H P Y, Caspi L, Lam C K, Chari M, Li X, Light PE, Gutierrez-Juarez R, Ang M, Schwartz G J, and Lam T K (2008): Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature. 24; 452(7190): 1012-6. https://doi.org/10.1038/nature06852

William H. Hoover (1978): Digestion and Absorption in the Hindgut of Ruminants JAS 46(6), 1789-1799. https://doi.org/10.2527/jas1978.4661789x

William R. Wikoff, Andrew T. Anfora, Jun Liu, Peter G. Schultz, Scott A. Lesley, Eric C. Peters, and Gary Siuzdak: Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites; PNAS 10, 2009 106 (10) 3698-3703. https://doi.org/10.1073/pnas.0812874106

Wong, Julia M.W.; Esfahani, Amin; Singh, Natasha; Villa, Christopher R.; Mirrahimi, Arash; Jenkins, David J.A.; Kendall, Cyril W.C.(2012): Gut Microbiota, Diet, and Heart Disease; Journal of AOAC International, 95,(1) 24-30 https://doi.org/10.5740/jaoacint.sge_wong  


Download this article as Download

How to cite this article:

Alok Tripathi. 2025. Modulating Gut Fermentation: A Novel Approach to Managing Hypertension and Modulation of Gut Fermentation.Int.J.Curr.Microbiol.App.Sci. 14(1): 193-203. doi: https://doi.org/10.20546/ijcmas.2025.1401.016
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations