Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 14, Issue:1, January, 2025

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2025.14(1): 168-183
DOI: https://doi.org/10.20546/ijcmas.2025.1401.014


Comparison of the Selection of Resistant Bacterial Mutants and Stability of Resistance Profiles in Escherichia coli and Staphylococcus aureus Exposed to Essential Oils and Antibiotics at Subinhibitory Concentrations
Cedric F. Tchinda1*, Del Florence E. N. Moni2, Flaubert M. Y. Tcham3, 4, Djoyalbaye Togyedji2, 3, Tatiana I. Babassagana2, Elsa N. Makue2, Gaizirene E. Feudjieu1, 2, Gael N. Nfor1, Sonia G. Matchuenkam1, Armelle D. Tchamgoue1, Gabriel A. Agbor1, Veronique P. Beng3, 4 and Jean P. A. Assam2, 3
1Pharmacology and Drugs Discovery Laboratory, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaoundé, Cameroon
2Department of Microbiology, Faculty of Sciences, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon;
3Laboratory for Tuberculosis Research and Pharmacology, Biotechnology Center, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
4Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, P.O. Box 812, Yaoundé, Cameroon
*Corresponding author
Abstract:

The excessive and inappropriate use of antibiotics promotes the emergence of bacterial resistance, prompting research to explore therapeutic alternatives, such as essential oils, due to their bioactive substances. However, the potential for future resistance to essential oils concerns the scientific community. In this context, the present study was designed to compare the responses of bacteria exposed to sub-inhibitory concentrations of essential oils (EOs) and antibiotics. We assessed the antibacterial activity of EOs and reference antibiotics using the liquid microdilution method. We then exposed strains of Escherichia coli and Staphylococcus aureus to fixed and increasing sub-inhibitory concentrations of these antimicrobials, selected resistant mutants, and transferred them to a medium without antimicrobials to determine new inhibition parameters and evaluate the stability of resistance. The results show that Lippia multiflora EO exhibited the best activity, with an MIC ranging from 0.0976 mg/mL to 12.5 mg/mL. Levofloxacin displayed bactericidal activity against Staphylococcus aureus and Pseudomonas aeruginosa and bacteriostatic activity against Streptococcus pyogenes. Ciprofloxacin, on the other hand, showed tolerance against Escherichia coli. After discontinuous exposure to EOs and antibiotics, the Staphylococcus aureus and Escherichia coli strains modified their sensitivity to EOs, with MICs varying from 2 to 16 times the initial MIC, while Ciprofloxacin increased 8-fold and Levofloxacin increased 256-fold. Lippia multiflora EO showed no variation in the stability of resistance, whereas strains exposed to Chromolaena odorata EO maintained their resistant character. The strains also maintained a resistance to antibiotics. This study demonstrates that EOs play an important role in the selection of resistant mutants, and their rational use is essential. Although Lippia multiflora and Chromolaena odorata EOs exhibited antibacterial activity against some Gram-positive bacteria, long-term and inappropriate exposure could contribute to the emergence of resistance.


Keywords: Essential oils, sub-inhibitory concentration, antibacterials, Lippia multiflora, Chromolaena odorata


References:

Aligiannis, N., Kalpotzakis, E., Mitaku, S., & Chinou, I. B. 2001. Composition and antimicrobial activity of the essential oils of two Origanum species. Journal of Agricultural and Food Chemistry, 40: 4168–4170. https://doi.org/10.1021/jf001494m

Avlessi, F., Guy, A., Sebastien, T. D., Tchobo, F. P., Yehouénou, B., Menut, C., & Sohounhloue, D. K. 2012. Chemical composition and biological activities of the essential oil extracted from fresh leaves of Chromolaena odorata (L. Robinson) growing in Benin. ISCA Journal of Biological Sciences, 1(3): 7–13.

Babassagana, I. T. 2019. Effet des traitements d'huiles essentielles et antibiotiques aux concentrations sub-inhibitrices sur la sensibilité d'E. coli. Mémoire de Master, Université de Yaoundé 1, p. 58.

Becerril, R., Nerín, C., & Gómez-Lus, R. 2012. Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathogens and Disease, 9(8): 699–705. https://doi.org/10.1089/fpd.2011.1097.

Berdejo, D., Pagán, E., Merino, N., Pagán, R., & García-Gonzalo, D. 2020. Incubation with a complex orange essential oil leads to evolved mutants with increased resistance and tolerance. Pharmaceuticals, 13(9): 239. https://doi.org/10.3390/ph13090239.

Bonou, J., Baba-Moussa, F., Adéoti, Z., Ahouandjinou, H., Dougnon, V., Gbenou, J., Toukourou, F., & Baba-Moussa, L. 2016. Antimicrobial activity of essential oils of Lippia multiflora, Eugenia caryophyllata, Mentha piperita and Zingiber officinale on five oral-microorganisms. Journal of Pharmacology and Phytochemistry, 5(5): 271–276.

Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods – A review. International Journal of Food Microbiology, 94(3): 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.

CLSI (Clinical Laboratory Standard Institute). 2018. Performance standard for dilution antimicrobial disk susceptibility tests, 13th ed. CLSI standard M02, Wayne, PA.

CLSI (Clinical Laboratory Standard Institute). 2018. Performance standard for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th ed. CLSI standard M07, Wayne, PA.

Couriera, M. 2017. Étude in vitro de la potentialisation d’antibiotiques contre des souches d’Escherichia coli O78k80 multi-résistantes isolées en élevage aviaire par les huiles essentielles. Thèse Médecine – Pharmacie, Université Claude-Bernard - Lyon I, pp. 44–45.

Cowan, M. M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4): 564–582. https://doi.org/10.1128/CMR.12.4.564

Cyrille, G., Dadie, A., Yaya, S., Désiré, K., Kassi, A., & Marcellin, D. 2017. Antimicrobial and preservative activities of Lippia multiflora essential oil on smoked mackerel (Scomber scombrus) fish. Archives of Clinical Microbiology, 8: 1–6. https://doi.org/10.4172/1989-8436.100063.

Dorman, H. J. D., & Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2): 308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x.

El Amri, J., Elbadaoui, K., Zai, T., Hayate, B., Said, C., & Taj Imolk, A. 2014. Étude de l'activité antibactérienne des huiles essentielles de Teucrium capitatium L et de l'extrait de Silene vulgaris sur les différentes souches testées. Journal of Applied Biosciences, 82: 7481–7492. https://doi.org/10.4314/jab.v82i1.16

Etou-Ossibi, A.-W., Nzonzi, J., Mombouli, J., Nsondé-Ntandou, G., Ouamba, J.-M., & Abena, A. 2005. Screening chimique et effets de l’extrait aqueux du Lippia multiflora Moldenke sur le cœur isolé du crapaud. Phytothérapie, 3: 193–199. https://doi.org/10.1007/s10298-005-0104-z.

Ezo'o, F. E., Tchonang, S. C., Kemaleu, H. L., Kamdem, S. L. S., & Ngang, J. J. E. 2018. Exposure to plant extract causes the variation of antibiotic susceptibility of two bacterial strains (Salmonella serotype Typhi and Staphylococcus aureus). Journal of Advances in Microbiology, 1–14. https://doi.org/10.9734/JAMB/2018/43446.

Famuyide, I. M., Aro, A. O., Fasina, F. O., Eloff, J. N., & McGaw, L. J. 2019. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South Africa Euginia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1): 141. https://doi.org/10.1186/s12906-019-2547-z

Fauchère, J.-L., & Avril, J.-L. 2002. Bactériologie générale et médicale. Ellipses.

Gabriel, I., Alleman, F., Dufourcq, V., Perrin, Q., & Gabarrou, J. F. 2013. Utilisation des huiles essentielles en alimentation des volailles. 2: Hypothèses sur les modes d'action impliqués dans les effets observés. INRA Prod Anim., 26(1): 13–24.

Global Antimicrobial Resistance Surveillance System (GLASS). 2020. Antimicrobial resistance. Available at: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

Goly, C., Soro, Y., Kassi, B., Dadie, A., Soro, S., & Dje, M. 2015. Antifungal activities of the essential oil extracted from the tea of savanna (Lippia multiflora) in Côte d’Ivoire. International Journal of Biological and Chemical Sciences, 9: 24. https://doi.org/10.4314/ijbcs.v9i1.3.  

Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G., & Wright, A. V. 1998. Characterization of the action of selected essential oil components on gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46: 3590–3595. https://doi.org/10.1021/jf980154m

Hoelzer, K., Wong, N., Thomas, J., Talkington, K., Jungman, E., & Coukell, A. 2017. Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence? BMC Veterinary Research, 13(1): 211. https://doi.org/10.1186/s12917-017-1131-3

Itou, C. J., Morabandza, A. W., Etou Obissi, G. F., Louningou, F. G., Ntandou, N., & Abena, A. A. 2018. Possible mechanisms of anti-inflammatory and analgesic effects of the aqueous extracts of Ceiba pentandra Gaertn (Bombacaceae) and Chromolaena odorata L. (King and Robinson) (Asteraceae) in rat. International Journal of Herbal Medicine, 6(1): 20–25.

Juwairiah, J., & Roebiakto, E. 2022. The effectiveness of Kirinyuh (Chromolaena odorata L.) leaf essential oil as an antibacterial against Staphylococcus aureus and Escherichia coli. Tropical Health and Medical Research, 4(2): 1–6. https://doi.org/10.35916/thmr.v4i1.64.

Kanco, C., Koukoua, G., N’guessan, Y. T., Fournier, J., Pradère, J. P., & Toupet, L. 2004. Contribution à l’étude phytochimique de Lippia multiflora (Verbenaceae). C. R. Chimie, 7: 1029–1032.

Kuete, V., Wabo, F. G., Ngameni, B., Mbaveng, T. A., Metuno, R., Etoa, F.-X., & Lall, N. 2007. Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae). Journal of Ethnopharmacology, 114(1): 54–60. https://doi.org/10.1016/j.jep.2007.07.025

Lambert, R. J., Skandamis, P. N., Coote, P., & Nychas, G.-J. 2001. A study of the minimum inhibitory concentration and mode of action of organo essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91: 453–462. https://doi.org/10.1046/j.1365-2672.2001.01428.x

Lee, A., Mao, W., Warren, M. S., Mistry, A., Hoshino, K., Okumura, R., Ishida, H., & Lomovskaya, O. 2000. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. Journal of Bacteriology, 182(11): 3142–3150. https://doi.org/10.1128/jb.182.11.3142-3150.2000

Longuefosse, J. L. 2006. Le guide de phytothérapie créole. Éditions ORPHIE, p. 264.

Melo, A. P. Z. de, Maciel, M. V. de O. B., Sganzerla, W. G., Almeida, A. da R., Armas, R. D. de, Machado, M. H., Rosa, C. G. da, Nunes, M. R., Bertoldi, F. C., & Barreto, P. L. M. 2020. Antibacterial activity, morphology, and physicochemical stability of biosynthesized silver nanoparticles using thyme (Thymus vulgaris) essential oil. Materials Research Express, 7(1): 015087. https://doi.org/10.1088/2053-1591/ab6c63

Mj, C., Ilanko, A., Blonk, B., & Ie, C. 2017. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacognosy Reviews, 11(22): 57 -72. https://doi.org/10.4103/phrev.phrev_21_17

Moni, E. D., Nyegue, M. A., Assam, J. P., Betote, P., Feudjieu, G. E., Penlap, V. B., & Etoa, F.-X. 2019. Effects of essential oil from Drypetes gossweileri S. Moore stem barks on cell release and DNA synthesis of Mycobacterium tuberculosis. Journal of Drug Delivery and Therapeutics, 9(2-s): Article 2-s. https://doi.org/10.22270/jddt.v9i2s.2644.

Ndoye F. Étude chimique et évaluation des propriétés antiradicalaires et antioxydantes des huiles essentielles d’espèces aromatiques tropicales en provenance d’Est du Cameroun, Thèse de Doctorat. France: Université de Montpellier II; 2001.

O’Neill, J. 2016. Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance, 1–4.

Oladimeji, F. A., Orafidiya, O. O., Ogunniyi, T. A., & Adewunmi, T. A. 2000. Pediculocidal and scabicidal properties of Lippia multiflora essential oil. Journal of Ethnopharmacology, 72(1–2): 305–311. https://doi.org/10.1016/s0378-8741(00)00229.   

Omokhua, A. G., Abdalla, M. A., Leonard, C. M., Aro, A., Uyi, O. O., Van Staden, J., & McGaw, L. J. 2020. Flavonoids isolated from the South African weed Chromolaena odorata (Asteraceae) have pharmacological activity against uropathogens. BMC Complementary Medicine and Therapies, 20(1): 233. https://doi.org/10.1186/s12906-020-03024-0.   

Omokhua, A. G., Lyndy, J. M., Jeffrey, F. F., & Johannes, V. S. 2015. Chromolaena odorata (L.) R.M. King & H. Rob. (Asteraceae) in sub-Saharan Africa: A synthesis and review of its medicinal potential. Journal of Ethnopharmacology, 183: 112–122. https://doi.org/10.1016/j.jep.2015.04.057.    

Omokhua, A. G., McGaw, L. J., Chukwujekwu, J. C., Finnie, J. F., & Van Staden, J. 2017. A comparison of the antimicrobial activity and in vitro toxicity of a medicinally useful biotype of invasive Chromolaena odorata (Asteraceae) with a biotype not used in traditional medicine. South African Journal of Botany, 108: 200–208. https://doi.org/10.1016/j.sajb.2016.10.017.  

Owoyele, V. B., Adediji, J. O., & Soladoye, A. O. 2005. Anti-inflammatory activity of aqueous leaf extract of Chromolaena odorata. Inflammo-Pharmacology, 13(5): 479–484. https://doi.org/10.1163/156856005774649386.

Pascual, M. E., Slowing, K., Carretero, E., Mata, D. S., & Villar, A. 2001. Lippia: Traditional uses, chemistry and pharmacology: A review. Journal of Ethnopharmacology, 76: 201–214. https://doi.org/10.1016/S0378-8741(01)00234-3.

Ratnakar, P., & Murthy, S. 1996. Preliminary studies on the antitubercular activity and the mechanism of action of the water extract of garlic (Allium sativum) and its two partially purified proteins (garlic defensins). Indian Journal of Clinical Biochemistry, 11(1): 37–41. https://doi.org/10.1007/BF02868409.

Russell, A. D., Tattawasart, U., Maillard, J. Y., & Furr, J. R. 1998. Possible link between bacterial resistance and use of antibiotics and biocides. Antimicrobial Agents and Chemotherapy, 42(8): 2151. https://doi.org/10.1128/AAC.42.8.2151.

Samba, N., Aitfella-Lahlou, R., Nelo, M., Silva, L., Coca, R., Rocha, P., & López Rodilla, J. M. 2021. Chemical composition and antibacterial activity of Lippia multiflora Moldenke essential oil from different regions of Angola. Molecules, 26(1): 1–15. https://doi.org/10.3390/molecules26010155.

Santos, J., Gonçalves, M., Martins, H. H., Pinelli, J., Isidoro, S., & Piccoli, R. 2018. Homologous and heterologous adaptation of Listeria spp. to essential oils of condiment plants. Advances in Microbiology, 8: 639–649. https://doi.org/10.4236/aim.2018.88043.

Schwarz, S., Cloeckaert, A., & Roberts, M. 2006. Mechanisms and spread of bacterial resistance to antimicrobial agents. In: Antimicrobial Resistance in Bacteria. p. 73–98. https://doi.org/10.1128/9781555817534.ch6.

Soro, L. C., Munier, S., Pelissier, Y., Grosmaire, L., Yada, R., Kitts, D., Ocho-Anin Atchibri, A. L., Guzman, C., Boudard, F., Menut, C., Robinson, J. C., & Poucheret, P. 2016. Influence of geography, seasons and pedology on chemical composition and anti-inflammatory activities of essential oils from Lippia multiflora Mold leaves. Journal of Ethnopharmacology, 194: 587–594. https://doi.org/10.1016/j.jep.2016.10.047.

Udaya Prakash, N. K., Nannu Shankar, S., Bhuvaneswari, S., Sampathkumar, B., & Sreeraman, S. 2019. Comparative studies on phytochemistry, antioxidant and antibacterial activity of direct and sequential extracts of Chromolaena odorata leaves. International Journal of Research in Pharmaceutical Sciences, 10: 914–921. https://doi.org/10.26452/ijrps.v10i2.275.  

Van Der Horst, M. A., Schuurmans, J. M., Smid, M. C., Koenders, B. B., & Ter Kuile, B. H. 2011. De Novo acquisition of resistance to three antibiotics by Escherichia coli. Microbial Drug Resistance, 17(2): 141–147. https://doi.org/10.1089/mdr.2010.0101.

Vardar-Ünlü, G., Candan, F., Sökmen, A., Daferera, D., Polissiou, M., Sökmen, M., & Tepe, B. 2003. Antimicrobial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinatus Fisch. et Mey. Var. pectinatus (Lamiaceae). Journal of Agricultural and Food Chemistry, 51(1): 63–67. https://doi.org/10.1021/jf025753e.

Vijayaraghavan, K., Rajkumar, J., & Seyed, M. A. 2018. Phytochemical screening, free radical scavenging and antimicrobial potential of Chromolaena odorata leaf extracts against pathogenic bacterium in wound infections – A multispectrum perspective. Biocatalysis and Agricultural Biotechnology, 15: 103–112. https://doi.org/10.1016/j.bcab.2018.05.014.

Yala, J.-F., Rolande, M., Camara, B., Souza, A., Lepengue, A., Seydou, T., Kone, D., & M’batchi, B. 2016. In vitro antibacterial activity of Cymbopogon citratus, Eucalyptus citriodora, Lippia multiflora, Melaleuca quinquenervia essential oils and Neco on extended-spectrum beta-lactamases producing or non-producing bacterial strains. Journal of Medicinal Plants Research, 10: 796–804. https://doi.org/10.5897/JMPR2016.6272.  


Download this article as Download

How to cite this article:

Cedric F. Tchinda, Del Florence E. N. Moni, Flaubert M. Y. Tcham, Djoyalbaye Togyedji, Tatiana I. Babassagana, Elsa N. Makue, Gaizirene E. Feudjieu, Gael N. Nfor, Sonia G. Matchuenkam, Armelle D. Tchamgoue, Gabriel A. Agbor, Veronique P. Beng and Jean P. A. Assam. 2025. Comparison of the Selection of Resistant Bacterial Mutants and Stability of Resistance Profiles in Escherichia coli and Staphylococcus aureus Exposed to Essential Oils and Antibiotics at Subinhibitory Concentrations.Int.J.Curr.Microbiol.App.Sci. 14(1): 168-183. doi: https://doi.org/10.20546/ijcmas.2025.1401.014
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations