![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
The potential of gut microbiome in health and diseases has emerged as an area of profound scientific research and clinical exploration that elucidates the correlation of human immune system homeostasis, and metabolic functions with altered diversity of gut microbiota. This further validates the underlying causes and consequences of variability in gut microbiome profiles in the development of autoimmune and inflammatory diseases such as rheumatoid arthritis, cardiovascular and respiratory illnesses, neurological disorders such as neurodevelopment disorders, autism spectrum disorders, attention deficit hyperactivity disorder, stroke, Parkinson’s disease, schizophrenia, Alzheimer’s disease, depression, gastrointestinal inflammations including irritable bowel syndrome, inflammatory bowel disease, ulcerative colitis, Crohn’s disease, Clostridium difficile infection, metabolic diseases including type 1 and type 2 diabetes mellitus, non-alcoholic fatty liver disease, liver cirrhosis, immunomodulation and certain types of cancers. Dietary interventions, fasting regimens, nutritional supplements, antibiotics, probiotics, prebiotics, synbiotics, postbiotics psychobiotics, bacteriophage, and fecal microbiota transplantation are the possible interventions that open avenues in the near future to exploit individual microbiota profiles in clinical practice as a biomarker for gut health of the patients who are at the risk of developing certain abnormalities and ailments attributed to dysbiosis. The knowledge of the present review on microbiome modulation-based therapeutic interventions to target enhanced human health comprehensively sheds light on how this upcoming field unveils the opportunities for improving human health and for preventing, treating and managing certain autoimmune diseases.
Abu-Shanab and E.M.M. Quigley, The role of the gut microbiota in nonalcoholic fatty liver disease, Nat Rev Gastroenterol Hepatol.7, 2010, 691–701.
Adak, A., Khan, M.R. (2019).An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 76:473–93.
Adams, J.B., Johansen, L.J., Powell, L.D., Quig, D., Rubin, R.A. (2011).Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11: 22.
Aït-Aissa, A., Aïder, M. (2014). Lactulose: Production and use in functional food, medical and pharmaceutical applications. Practical and critical review. Int. J. Food Sci. Technol. 49: 1245–1253.
Amminger, G.P., Schäfer, M.R., Klier, C.M., Slavikm J.M., Holzer, I., Holub, M. et al., (2012).Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol Psychiatry. 17:1150–2. https://doi.org/10.1038/mp.2011.167.
Angoorani, P., Ejtahed, H.S., Hasani-Ranjbar, S., Siadat, S.D., Soroush, A.R., Larijani, B. (2021). Gut microbiota modulation as a possible mediating mechanism for fasting-induced alleviation of metabolic complications: A systematic review. Nutr. Metab.18: 105.
Aoyama, M., Kotani, J., Usami, M. (2010). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition. 26:653-661.
Aroniadis, O.C., Brandt, L.J. (2013). Fecal microbiota transplantation: past, present and future. Curr. Opin. Gastroenterol. 29: 79–84, http://dx.doi.org/10.1097/MOG.0b013e32835a4b3e.
Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K. et al., (2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 500:232–236. https://doi.org/10.1038/nature12331.
Baek, D., Park, Y. (2013).Association between erythrocyte n-3 polyunsaturated fatty acids and biomarkers of inflammation and oxidative stress in patients with and without depression. Prostaglandins Leukot Essent Fat Acids. 89: 8. https://doi.org/10.1016/j.plefa.2013.09.008
Bagheri, S., Heydari, A., Alinaghipour, A., Salami, M. (2019).Effect of probiotic supplementation on seizure activity and cognitive performance in pTZ-induced chemical kindling. Epilepsy Behav. 95:38. https://doi.org/10.1016/j.yebeh.2019.03.038.
Bailón, E., Cueto-Sola, M., Utrilla, P. et al., (2010). Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis. Immunobiology. 215: 863-873.
Barbara, G. (2006). Mucosal Barrier Defects in Irritable Bowel Syndrome. Who Left the Door Open? Am. J. Gastroenterol. 101:1295–1298.
Barcenilla, A., Pryde, S.E., Martin, J.C., Duncan, S.H., Stewart, C.S., Henderson, C., Flint, H.J. (2000).Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut. Appl. Environ. Microbiol. 66: 1654–1661.
Biazzo, M., and Deidda, G. (2022). Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J. Clin. Med. 11, 4119. https://doi.org/10.3390/JCM11144119.
Bikel, S., Lo´ pez-Leal, G., Cornejo-Granados, F., Gallardo-Becerra, L., Garc?´a-Lo´ pez, R., Sa´ nchez, F., Equihua-Medina, E., Ochoa-Romo, J.P., Lo´ pez-Contreras, B.E., Canizales-Quinteros, S., et al., (2021). Gut dsDNA virome shows diversity and richness alterations associated with childhood obesity and metabolic syndrome. iScience. 24:102900. https://doi.org/10.1016/J.ISCI.2021.102900.
Bistoletti, M., Caputi, V., Baranzini, N., Marchesi, N., Filpa, V.,Marsilio, I., Cerantola, S., Terova, G., Baj, A., Grimaldi, A., et al., (2019).Antibiotic treatment-induced dysbiosis differently affects BDNF and TrkB expression in the brain and in the gut of juvenile mice. PLoS ONE. 14: e0212856.
Blanc, P., Daures, J.P., Rouillon, J.M., Peray, P., Pierrugues, R., Larrey, D., Gremy, F., Michel, H. (1992). Lactitol or lactulose in the treatment of chronic hepatic encephalopathy: Results of a meta-analysis. Hepatology.15: 222–228.
Block, J.P., Bailey, L.C., Gillman, M.W., Lunsford, D., Daley, M.F., Eneli, I., et al., (2018). Early Antibiotic Exposure and Weight Outcomes in Young Children. Pediatrics. 142:e20180290. https://doi.org/10.1542/peds.2018-0290 PMID: 30381474
Bonder, M.J., Tigchelaar, E.F., Cai, X., Trynka, G., Cenit, M.C., Hrdlickova, B. et al., (2016).The influence of a short-term gluten-free diet on the human gut microbiome. GenomeMed. 8(1):45.
Borin, J.M., Liu, R., Wang, Y., Wu, T. C., Chopyk, J., Huang, L., Kuo, P.,Ghose, C., Meyer, J.R., Tu, X.M. et al., (2023). Fecal virome transplantation is sufficient to alter fecal microbiota and drive lean and obese body phenotypes in mice. Preprint at bioRxiv. https://doi.org/10.1101/2023.02.03.527064.
Borzabadi, S., Oryan, S., Eidi, A., Aghadavod, E., Daneshvar Kakhaki, R., Tamtaji, O.R., Taghizadeh, M., Asemi, Z. (2018). The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin and Lipid in Patients with Parkinson’s Disease: A Randomized, Double-blind, Placebo Controlled Trial. Arch. Iran. Med. 21: 289–295.
Bosi, P., Sarli, G., Casini, L., De Filippi, S., Trevisi, P., Mazzoni, M., Merialdi, G. (2007). The influence of fat protection of calcium formate on growth and intestinal defence in Escherichia coli K88-challenged weanling pigs. Anim Feed Sci Technol. 139 (3–4):170–185. https://doi.org/10.1016/j.anifeedsci.2006.12.006.
Bough, K.J., Rho, J.M.(2007). Anticonvulsant Mechanisms of the Ketogenic Diet. Epilepsia, 48: 43–58.
Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F. et al., (2016).The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 63 (3):764–75.
Bowling, A., Davison, K., Haneuse, S., Beardslee, W., Miller, D.P. (2017). ADHD medication, dietary patterns, physical activity, and bmi in children: a longitudinal analysis of the ECLS-K Study. Obesity. 25:21949. https://doi.org/10.1002/oby.21949.
Brandl, K., Plitas, G., Mihu, C.N., Ubeda, C., Jia, T., Fleisher, M. et al., (2008).Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature. 455:804–807. https://doi.org/10.1038/nature07250 PMID: 18724361
Buffie, C. G., Jarchum, I., Equinda, M., Lipuma, L., Gobourne, A., Viale, A., Ubeda, C., Xavier, J., & Pamer, E. G. (2012). Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile?induced colitis. Infection and Immunity. 80 (1), 62–73. https://doi.org/10.1128/IAI.05496-11.
Buffie, C.G., Pamer, E.G. (2013). Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 13:790–801. https://doi.org/10.1038/nri3535.
Burger, M., Hoosain, M., Einspieler, C., Unger, M., Niehaus et al., (2020).Maternal perinatal mental health and infant and toddler neurodevelopment – evidence from low and middle-income countries. A systematic review. J Affect Disord. 268:23. https://doi.org/10.1016/j.jad.2020.03.023.
Cadenhead, K., Addington, J., Bearden, C., Cannon, T., Cornblatt, B., Mathalon, D. et al., (2017). Dietary omega 3 and erythrocyte omega 3 are associated with symptoms, functioning and psychotic conversion in a clinical high risk population. Neuropsychopharmacology.
Cahenzli, J., Köller, Y., Wyss, M., Geuking, M. B., & McCoy, K. D. (2013). Intestinal microbial diversity during early?life colonization shapes long?term IgE levels. Cell Host and Microbe. 14(5): 559–570. https://doi.org/10.1016/j.chom.2013.10.004.
Camargo, A.C., Todorov, S.D., Chihib, N.E., Drider, D., Nero, L.A. (2018). Lactic Acid Bacteria (LAB) and Their Bacteriocins as Alternative Biotechnological Tools to Control Listeria monocytogenes Biofilms in Food Processing Facilities. Mol. Biotechnol., 60: 712–726.
Candela, M.; Guidotti, M.; Fabbri, A.; Brigidi, P.; Franceschi, C.; Fiorentini, C. Human intestinal microbiota:Cross-talk with the host and its potential role in colorectal cancer. Crit. Rev. Microbiol. 2011, 37, 1–14.
Cani, P.D., Jordan, B.F. (2018). Gut microbiota-mediated inflammation in obesity: A link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 15: 671–682.
Carrothers, J.M., York, M.A, Brooker, S.L., Lackey, K.A., Williams, J.E., Shafii, B. et al., (2015). Fecal microbial community structure is stable over time and related to variation in macronutrient and micronutrient intakes in lactating women. J Nutr.145:2379–88. https://doi.org/10.3945/jn.115.211110.
Castro, K., Faccioli, L.S., Baronio, D., Gottfried, C., Perry, I.S., dos Santos Riesgo, R. (2015). Effect of a ketogenic diet on autism spectrum disorder: a systematic review. Res Autism Spectr Disord. 20: 31–8. https://doi.org/10.1016/j.rasd.2015.0 8.005.
Caussy, C., Tripathi, A., Humphrey, G., Bassirian, S., Singh, S., Faulkner, C., Bettencourt, R., Rizo, E., Richards, L., Xu, Z.Z., et al., (2019). A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat. Commun. 10:1406. https://doi.org/10.1038/s41467-019-09455-9.
Cazorla, S. I., Maldonado?Galdeano, C., Weill, R., De Paula, J., & Perdigón, G. (2018). ‘Oral administration of probiotics increases Paneth cells and intestinal antimicrobial activity’. Frontiers in Microbiology. 9: 1–14. https://doi.org/10.3389/fmicb.2018.00736.
Cha, H.Y., Yang, S.J. (2020).Anti-inflammatory diets and schizophrenia. Clin Nutr Res. 9:241. https://doi.org/10.7762/cnr.2020.9.4.241.
Chaiyasit, K., Wiwanitkit, V. (2016). Black pepper: stimulation of diarrhea in patient with underlying short bowel syndrome. Ancient Sci Life. 35 (3):185. https://doi.org/10.4103/0257-7941.179872.
Chambers, E.S., Preston, T., Frost, G., Morrison, D.J. (2018) Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep. 7:198–206.
Chassaing, B., Koren, O., Goodrich, J.K., Poole, A.C., Srinivasan, S., Ley, R.E. et al., (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 519 (7541):92–6.
Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M., Gewirtz, A.T. (2017). Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 66 (8):1414–27.
Chatterjee, I., Lu, R., Zhang, Y., Zhang, J., Dai, Y., Xia, Y. et al., (2020). Vitamin D receptor promotes healthy microbial metabolites and microbiome. Sci Rep.10:7340. https://doi.org/10.1038/s41598- 020- 64226- 7.
Chen, J., Yu, B., Chen, D., Zheng, P., Luo, Y., Huang, Z., Luo, J., Mao, X., Yu, J., He, J. (2019). Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Appl. Microbiol. Biotechnol. 103: 8157–8168.
Chen, M.L., Sundrud, M.S. (2016). Cytokine Networks and T-Cell Subsets in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 22: 1157–1167.
Chen, Q., Ma, X., Li, C., Shen, Y., Zhu, W., Zhang, Y., Guo, X., Zhou, J., and Liu, C. (2020). Enteric Phageome Alterations in Patients With Type 2 Diabetes. Front. Cell. Infect. Microbiol. 10:575084. https://doi.org/10.3389/FCIMB.2020.575084.
Chen, R.Y., Mostafa, I., Hibberd, M.C., Das, S., Mahfuz, M., Naila, N.N, et.al.(2021).A Microbiota-Directed Food Intervention for Undernourished Children. N Engl J Med. 384:1517–1528. https://doi.org/10.1056/NEJMoa2023294 PMID: 33826814
Cheng, L.H., Liu, Y.W., Wu, C.C., Wang, S., Tsai, Y.C. (2019). Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J. Food Drug Anal. 27: 632–648.
Chung, Y-C., Jin, H-M., Cui, Y. et al., (2014). Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. J. Funct. Foods. 10:465–474.
Clarke, S., Green-Johnson, J., Brooks, S., Ramdath, D., Bercik, P.,Avila, C., Inglis, G., Green, J., Yanke, L.,Selinger, L.(2016). B2-1 fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: Results from a double-blinded, randomised, cross-over study in healthy adults. Br. J. Nutr. 115: 1748–1759.
Cohen, J (2016). Vaginal microbiome affects HIV risk. Science. 353(6297):331.
Coker, M.O., Laue, H.E., Hoen, A.G., Hilliard, M., Dade, E., Li, Z. et al., (2021).Infant feeding alters the longitudinal impact of birth mode on the development of the gut microbiota in the first year of life. Front Microbiol. 12197. https://doi.org/10.3389/fmicb.2021.642197
Collado, M.C., Salminen, S., Vinderola, G. (2021). Chapter 11-Postbiotics: Defining the impact of inactivated microbes and their metabolites on promotion of health. In: The Human Microbiome in Early Life. (Koren, O., Rautava, S., Eds.), Academic Press: Cambridge, MA, USA. pp. 257–268.
Corsello, G., Carta, M., Marinello, R., Picca, M., De Marco, G., Micillo, M., Ferrara, D., Vigneri, P., Cecere, G., Ferri, P., et al., (2017). Preventive Effect of Cow’s Milk Fermented with Lactobacillus paracasei CBA L74 on Common Infectious Diseases in Children: A Multicenter Randomized Controlled Trial. Nutrients 9:669. https://doi.org/10.3390/nu9070669.
Costabile, A., Bergillos-Meca, T., Rasinkangas, P. et al., (2017). Effects of soluble corn fiber alone or in synbiotic combination with Lactobacillus rhamnosus GG and the pilus-deficient derivative GG-PB12 on fecal microbiota, metabolism, and markers of immune function: a randomized, double-blind, placebo-controlled, crossover study in healthy elderly (saimes study). Front Immunol. 8 :1443. https://doi.org/10.3389/fimmu.2017.01443
Cowan, C.S.M, Stylianakis, A.A., Richardson, R. (2019).Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Dev Cogn Neurosci. 37:627. https://doi.org/10.1016/j.dcn.2019.100627.
Cowan, M., Petri, W.A. Jr. (2018). Microglia: Immune Regulators of Neurodevelopment. Front. Immunol. 9: 2576.
Cox, M.A., Jackson, J., Stanton, M., et al., (2009). Short-chain fatty acids act as anti-inflammatory mediators by regulating prostaglandin E and cytokines. World J.Gastroentero 15: 5549-5557.
Cross, H.S., Bises, G., Lechner, D., Manhardt, T., Kállay, E. (2005). The Vitamin D endocrine system of the gut—Its possible role in colorectal cancer prevention. J SteroidBiochem Mole Biol. 97:121–8. https://doi.org/10.1016/j.jsbmb.2005.06.005.
Cruz-Aguliar, R.M., Wantia, N., Clavel, T., Vehreschild, M.J.G.T., Buch, T., Bajbouj, M., Haller, D., Busch, D., Schmid, R., Stein-Thoeringer, C. et al., (2019). An open-labeled study on fecal microbiota transfer in irritable bowel syndrome patients reveals improvement in abdominal pain associated with the relative abundance of akkermansia muciniphila. Digestion. 100:127–138. https://doi.org/10.1159/000494252.
Cryan, J.F., Dinan, T.G. (2012).Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci. 13:701–12. https://doi.org/10.1038/nrn3346.
Dapito, D.H., Mencin, A., Gwak, G.Y., Pradere, J.P., Jang, M.K., Mederacke, I. et al., (2012). Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 21(4):504–16.
Dargahi, N., Matsoukas, J., Apostolopoulos, V. (2020). Streptococcus thermophiles ST285 alters pro-inflammatory to anti-inflammatory cytokine secretion against multiple sclerosis peptide in mice. Brain Sci. 10:126.
Dasgupta, S., Erturk-Hasdemir, D., Ochoa-Reparaz, J., Reinecker, H.C. and Kasper, D.L. (2014). Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe. 15:413–423. https://doi.org/10.1016/j.chom.2014.03.006.
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E,, Wolfe, B.E. et al., (2014).Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505 (7484):559–63.
de Jonge, P.A., Wortelboer, K., Scheithauer, T.P.M., van den Born, B.J.H., Zwinderman, A.H., Nobrega, F.L., Dutilh, B.E., Nieuwdorp, M., and Herrema, H. (2022). Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome. Nat. Commun. 13:3594. https://doi.org/10.1038/S41467-022-31390-5.
De Moraes, W.M.A.M., Mendes, A.E.P., Lopes, M.M.M., Maia, F.M.M.(2017). Protein overfeeding is associated with improved lipid and anthropometric profile thus lower malondialdehyde levels in resistance-trained athletes. Int. J. Sports Sci. 7: 87–93.
de Moura e Dias, M., Pais Siqueira, N., Lopes da Conceiç˜ao, L., Aparecida dos Reis, S., Xavier Valente, F., Maciel dos Santos Dias, M. et al., (2018). Consumption of virgin coconut oil in Wistar rats increases saturated fatty acids in the liver and adipose tissue, as well as adipose tissue inflammation. J Funct Foods.48: 472–80.
DeFilipp, Z., Bloom, P.P., Torres Soto. M. et al., (2019). Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 381(21):2043-2050.
Del Toro-Barbosa, M., Hurtado-Romero, A.; Garcia-Amezquita, L.E.; García-Cayuela, T. Psychobiotics: Mechanisms of Action, Evaluation Methods and Effectiveness in Applications with Food Products. Nutrients 2020, 12, 3896.
Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F. (2014). Microbiota is essential for social development in the mouse. Mol Psychiatry. 19:146–8. https://doi.org/10.1038/mp.2013.65
Devkota, S., Wang, Y., Musch, M.W., Leone, V., Fehlner-Peach, H., Nadimpalli, A. et al., (2012). Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 487(7405):104–8.
Diez-Gutierrez, L., San Vicente, L., Barron, L.J.R. et. al. (2020). Gammaaminobutyric acid and probiotics: multiple health benefits and their future in the global functional food and nutraceuticals market. J. Funct. Foods 64:103669
Dinan, T.G., Stanton, C., Cryan, J.F. (2013). Psychobiotics: A novel class of psychotropic. Biol. Psychiatry. 74: 720–726.
Dorrestein, P., Mazmanian, S., Knight, R. (2014). Finding the missing links among metabolites, microbes, and the Host. Immunity. 40 (6):824–832. https://doi.org/10.1016/j.immuni.2014.05.015.
Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H.,Sham, L., Reim, E.K., Lanctôt, K.L. (2010). A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry. 67: 446–457.
Duan, Y., Young, R., and Schnabl, B. (2021). Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 19: 135–144. https://doi.org/10.1038/s41575-021-00536-z.
Dubourg, G., Lagier, J. C., Robert, C., Armougom, F., Hugon, P., Metidji, S., Dione, N., Dangui, N. P. M., Pfleiderer, A., Abrahao, J., Musso, D., Papazian, L., Brouqui, P., Bibi, F., Yasir, M., Vialettes, B., & Raoult, D. (2014). Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad?spectrum antibiotics. International Journal of Antimicrobial Agents. 44(2): 117–124. http://doi.org/10.1016/j.ijantimicag.2014.04.020.
Duncan, S., Belenguer, A., Holtrop, G. et al., (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate producing bacteria in feces. Appl Environ Microb.73: 1073-1078.
Dupuis, N., Curatolo, N., Benoist, J.F., Auvin, S. (2015). Ketogenic diet exhibits anti-inflammatory properties. Epilepsia. 56:38. https://doi.org/10.1111/epi. 13038.
Dürholz, K., Hofmann, J., Iljazovic, A., Häger, J., Lucas, S., Sarter, K. (2020). Dietary short term fiber interventions in arthritis patients increase systemic SCFA levels and regulate inflammation. Nutrients.12:3207.
Elopre, L., Rodriguez, M. (2013).Fecal microbiota therapy for recurrent Clostridiumdifficile infection in HIV-infected persons, Ann. Intern. Med. 158 :779–780, http://dx.doi.org/10.7326/0003-4819-158-10-201305210-00021.
Del Chierico et. al. (2017). Gut microbiota profiling of pediatric NAFLD and obese patients unveiled by an integrated meta-omics based approach, Hepatology.. 65(2):451-464. https://doi.org/ 10.1002/hep.28572 https://doi.org/10.1002/hep.28572.
Fan, G., Cao, F., Kuang, T., Yi, H., Zhao, C., Wang, L., Peng, J., Zhuang, Z., Xu, T., Luo, Y., et al., (2023). Alterations in the gut virome are associated with type 2 diabetes and diabetic nephropathy. Gut Microb. 15:2226925.
Febvre, H.P., Rao, S., Gindin, M., Goodwin, N.D.M., Finer, E., Vivanco, J.S., Lu, S., Manter, D.K., Wallace, T.C., and Weir, T.L. (2019). PHAGE Study: Effects of Supplemental Bacteriophage Intake on Inflammation and Gut Microbiota in Healthy Adults. Nutrients. 11: 666. https://doi.org/10.3390/NU11030666.
Fei, N., Zhao, L. (2013). An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. IsmeJ. 7: 880-884.
Fenn, K., Strandwitz, P., Stewart, E.J., Dimise, E., Rubin, S., Gurubacharya, S. et al., (2017). Quinones are growth factors for the human gut microbiota. Microbiome. 5:161. https://doi.org/10.1186/s40168- 017- 0380- 5.
Fernandez-Real, J.M., Serino, M., Blasco, G., Puig, J., Daunis-i-Estadella, J., Ricart, W. et al., (2015).Gut microbiota interacts with brain microstructure and function. J Clin EndocrinolMetab. 100: 4505–13. https://doi.org/10.1210/jc.2015-3076.
Flint, H.J., Duncan, S.H., Scott, K.P., Louis, P. (2014). Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 74: 13–22.
Foster, J. A., McVey Neufeld, K.A. (2013).Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36:305–12. https://doi.org/10.1016/j.tins.2013.01.005
Fraguas, D., Díaz-Caneja, C.M., Pina-Camacho, L., Moreno, C., Durán-Cutilla, M., Ayora, M., et al., (2019).Dietary interventions for autism spectrum disorder: a Meta-analysis. Pediatrics. 144:3218. https://doi.org/10.1542/peds.2018-3218.
Fransen, F., A.A. van Beek, T. Borghuis, B. Meijer, F. Hugenholtz, C. van der Gaast-de Jongh, H.F. Savelkoul, M.I. de Jonge, M.M. Faas, M.V. Boekschoten et al., (2017). The impact of gut microbiota on gender-specific differences in immunity. Front. Immunol. 8:754. https://doi.org/10.3389/fimmu.2017.00754
Gálvez, A., Abriouel, H., López, R.L., Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol.120: 51–70.
Gaman, A.; Kuo, B. Neuromodulatory processes of the brain–gut axis. Neuromodulation 2008, 11, 249–259.
Gan, X.T., Ettinger, G., Huang, C.X., Burton, J.P., Haist, J.V., Rajapurohitam, V., Sidaway, J.E., Martin, G., Gloor, G.B., Swann, J.R., Reid, G., Karmazyn, M.(2014). Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 7:491– 499. https://doi.org/0.1161/CIRCHEARTFAILURE.113.000978.
Gänzle, M.G. (2015).Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2:106–117.
Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F.A., Cabreira Jobim, C., Bolson, D.C., and Pratti Daniel, J.L. (2018). Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology. PLoS One.13: e0193313. https://doi.org/10.1371/journal.pone.0193313.
Gasbarrini, G., Bonvicini, F. and Gramenzi, A. (2016). Probiotics history. J. Clin. Gastroenterol. 50: S116–S119. https://doi.org/10.1097/MCG.0000000000000697.
Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., Zhu, M., Li, J., & Li, N. (2017). Antibiotics?induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. Journal of Translational Medicine. 15(1): 1–9. https://doi.org/10. 1186/s12967-016-1105-4.
Gevers, D., Kugathasan, S., Denson, L.A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B. et al., (2014). The treatment-naive microbiome in new-onset Crohn's disease, Cell Host Microbe. 15:382–392, http://dx.doi.org/10.1016/j.chom.2014.02.005.
Gill, P.A., van Zelm, M.C., Muir, J.G. et al., (2018). Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther. 48:15–34. https://doi.org/10.1111/apt.14689
Gillis, C. C., Hughes, E. R., Spiga, L., Winter, M. G., Zhu, W., Furtado de Carvalho, T., Chanin, R. B., Behrendt, C. L., Hooper, L. V., Santos, R. L., & Winter, S. E. (2018). Dysbiosis? associated change in host metabolism generates lactate to support Salmonella growth. Cell Host and Microbe. 23(1):54–64. https://doi.org/10.1016/j.chom.2017.11.006.
Gogokhia, L., Buhrke, K., Bell, R., Hoffman, B., Brown, D.G., Hanke-Gogokhia, C., Ajami, N.J., Wong, M.C., Ghazaryan, A., Valentine, J.F. et al.,(2019).Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe.25(2):285–299.e8. https://doi.org/10.1016/j.chom.2019.01.008.
Golubeva, A.V., Joyce, S.A., Moloney, G., Burokas, A., Sherwin, E., Arboleya, S. et al., (2017).Microbiota-related changes in bile acid, tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine. 24:20. https://doi.org/10.1016/j.ebiom.2017.09.020.
Gomez-Arango, L.F., Barrett, H.L., McIntyre, H.D., Callaway, L.K., Morrison, M., Dekker Nitert, M. (2016). SPRING Trial Group. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension. 68:974–981. https://doi.org/10.1161/HYPERTENSIONAHA.116.07910.
Gong, H.S., Meng, X. C., Wang, H. (2010). Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium. 50, S37–S45.
Gordillo Altamirano, F.L., and Barr, J.J. (2019). Phage Therapy in the Postantibiotic. Era. Clin. Microbiol. Rev. 32: e00066-18. https://doi.org/10.1128/CMR.00066-18.
Gow, R.V. (2013).The Omega-3 Fatty Acid Deficiency Syndrome: Opportunities for Disease Prevention. McNamara RK, editor. Nova Science Publishers, Inc.
Gracious, B.L., Finucane, L., Friedman-Campbell, M., Messing, S., Parkhurst, M.N. (2012). Vitamin D deficiency and psychotic features in mentally ill adolescents: a cross-sectional study. BMC Psychiatry. 12:38. https://doi.org/10.1186/1471-244X-12-38.
Graf, D., Monk, J.M., Lepp, D., Wu, W., McGillis, L., Roberton, K. et al., (2019).Cooked red lentils dose-dependently modulate the colonic microenvironment in healthy C57Bl/6 male mice. Nutrients. 11 (8):1853.
Grüber, C., van Stuijvenberg, M., Mosca, F., Moro, G., Chirico, G., Braegger, C.P., Riedler, J., Boehm, G.,Wahn, U. (2010). MIPS 1 Working Group. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low-atopy-risk infants. J. Allergy Clin. Immunol. 126:791–797.
Gu,W., Zhang, L., Han, T., Huang, H., Chen, J. (2022). Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. J. Inflamm. Res. 15: 2631–2647.
Guigoz, Y., Rochat, F., Perruisseau-Carrier, G., Rochat, I., Schiffrin, E. (2002). Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutr.Res. 22: 13–25.
Gusarov, I., Gautier, L., Smolentseva, O. et al., (2013). Bacterial nitric oxide extends the lifespan of C. elegans. Cell 152:818–830.
Sokol, B. Pigneur, L. Watterlot, O. Lakhdari, L.G. Bermudez-Humaran, J.- J. Gratadoux, S. Blugeon, C. Bridonneau, J.-P. Furet, G. Corthier, C. Grangette, N. Vasquez, P. Pochart, G. Trugnan, G. Thomas, H.M. Blottiere, J. Dore, P. Marteau, P. Seksik, P. Langella. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, PNAS. 105 16731–16736, https://doi.org/10.1073/pnas.0804812105.
Hamada, H., Haruma, K., Mihara, M., Kamada, T., Yoshihara, M., Sumii, K. et al., (2000). High incidence of reflux oesophagitis after eradication therapy for Helicobacter pylori: impacts of hiatal hernia and corpus gastritis. Aliment Pharmacol Ther. 14 (6):729–35.
Han, M., Yang, P., Zhong, C. and Ning, K. (2018). The Human Gut Virome in Hypertension. Front. Microbiol. 9: 3150. https://doi.org/10.3389/FMICB.2018.03150/FULL.
Haukioja, A., Yli-Knuuttila, H., Loimaranta, V., Kari, K., Ouwehand, A.C., Meurman, J.H., and Tenovuo, J. (2006). Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol. Immunol. 21, 326–332. https://doi.org/10.1111/j.1399-302X.2006.00299.x.
Heiman, M.L., Greenway, F.L. (2016). A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 5: 317–320.
Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T. et al., (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity, Nature. 482 :179–185, http://dx.doi.org/10.1038/nature10809.
Heneka, M.T., Kummer, M.P., Latz, E. (2014). Innate immune activation in neuro-degenerative disease. Nat. Rev. Immunol. 14: 463–477.
Hill, D.B., Henderson, L.M., Mcclain, C.J. (1991). Osmotic diarrhea induced by sugar?free theophylline solution in critically III patients. J Parenteral Enter Nutr. 15(3):332–336. https://doi.org/10.1177/0148607191015003332.
Hsu, B.B., Gibson, T.E., Yeliseyev, V., Liu, Q., Lyon, L., Bry, L., Silver, P.A., Gerber, G.K. (2019).Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse Model. Cell Host Microbe. 25 (6):803–814. e5. https://doi.org/10.1016/j.chom.2019.05.001.
Humphrey, S.P., and Williamson, R.T. (2001). A review of saliva: normal composition, flow, and function. J. Prosthet. Dent 85, 162–169. https://doi.org/10.1067/mpr.2001.113778.
Iancu, M.A., Profir, M., Ro?u, O.A., Ionescu, R.F., Cretoiu, S.M., Gaspar, B.S. (2023). Revisiting the intestinal microbiome and its role in diarrhea and constipation. Microorganisms. 11(9):11. https://doi.org/10.3390/microorganisms11092177.
Imhann, F., M.J. Bonder, A. Vich Vila, J. Fu, Z. Mujagic, L. Vork, E.F. Tigchelaar, S.A. Jankipersadsing, M.C. Cenit, H.J. Harmsen, et al., (2016). Proton pump inhibitors affect the gut microbiome. Gut. 65:740–748. https://doi.org/10.1136/gutjnl-2015-310376.
Izuddin, W.I., Loh, T.C., Samsudin, A.A., Foo, H.L., Humam, A.M., and Shazali, N. (2019). Effects of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile, blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs. BMC Vet. Res. 15, 315. https://doi.org/10.1186/s12917-019-2064-9.
Jarmo?owska, B., Buka?o, M., Fiedorowicz, E., Cie´sli´nska, A., Kordulewska, N.K., Moszy´nska, M. et al., (2019).Role of milk-Derived opioid peptides and proline dipeptidyl peptidase-4 in autism spectrum disorders. Nutrients. 11:87. https://doi.org/10.3390/nu11010087.
Jensen, G.S., Benson, K.F., Carter, S.G., Endres, J.R.(2010). GanedenBC30TM cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro, BMC Immunol. 11-15, https://doi.org/10.1186/1471-2172-11-15.
Jensen, G.S., Hart, A.N. and A.G. (2007). An anti-inflammatory immunogen from yeast culture induces activation and alters chemokine receptor expression on human natural killer cells and B lymphocytes in vitro. Nutr. Res. 27:327–335. https://doi.org/10.1016/j.nutres.2007.04.008.
Jernberg, C., Löfmark, S., Edlund, C., & Jansson, J. K. (2007). Long?term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME Journal. 1(1): 56–66. https://doi.org/10.1038/ismej.2007.3.
Jernberg, C., Löfmark, S., Edlund, C., & Jansson, J. K. (2010). Long?term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 156(11): 3216–3223. https://doi.org/10.1099/mic.0.040618-0.
Jie, Z., Xia, H., Zhong, S.L., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z., Gao, Y., Zhao, H., et al., (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nat.Commun. 8: 845. https://doi.org/10.1038/s41467-017-00900-1.
Jin, X., Zhang, M., and Yang, Y.F. (2019). Saccharomyces cerevisiae b-glucan-induced SBD-1 expression in ovine ruminal epithelial cells is mediated through the TLR-2-MyD88-NF-kB/MAPK pathway. Vet. Res. Commun. 43: 77–89. https://doi.org/10.1007/s11259-019-09747-x.
Jo, J. K., Seo, S. H., Park, S. E., Kim, H. W., Kim, E. J., Kim, J. S., Pyo, J. Y., Cho, K. M., Kwon, S. J., Park, D. H. et al.,(2021). Gut Microbiome and Metabolome Profiles Associated with High-Fat Diet in Mice. Metabolites. 11: 482.
Jun, J.W., Kim, J.H., Shin, S.P., Han, J.E., Chai, J.Y. and Park, S.C. (2013). Characterization and complete genome sequence of the shigella bacteriophage pSf-1. ResMicrobiol.164 (10):979–986. https://doi.org/10.1016/j.resmic.2013.08.007.
Kaci, G., Goudercourt, D., Dennin, V., Pot, B., Doré, J., Ehrlich, S.D., Renault, P., Blottière, H.M., Daniel, C., Delorme, C. (2014) Anti-inflammatory properties of Streptococcussalivarius, a commensal bacterium of the oral cavity and digestive tract. Appl. Environ. Microbiol. 80: 928–934.
Kanazawa, A., Aida, M., Yoshida, Y. et al., (2021). Effects of synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes mellitus: a randomized controlled study. Nutrients.13:1–19. https://doi.org/10.3390/nu13020558.
Karbach, S.H., Schonfelder, T., Brandao, I., Wilms, E., Hormann, N., Jackel, S., Schuler, R., Finger, S., Knorr, M., Lagrange, J., Brandt, M., Waisman, A., Kossmann, S., Schafer, K., Munzel, T., Reinhardt, C., Wenzel, P. (2016). Gut microbiota promote angiotensin ii-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc.5.
Kedia, S., Virmani, S., Vuyyuru, K.S., Kumar, P., Kante, B., Sahu, P. et al., (2022). Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet al.,one is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: a randomised controlled trial. Gut. 71 (12):2401–13.
Keshteli, A.H., Millan, B. and Madsen, K.L.(2017). Pretreatment with antibiotics may enhance the efficacy of fecal microbiota transplantation in ulcerative colitis: a meta-analysis. Mucosal Immunol. 10:565–566. https://doi.org/10.1038/mi.2016.123.
Khan, S., Waliullah, S., Godfrey, V., Khan, M.A.W., Ramachandran, R.A., Cantarel, B.L. et al., (2020). Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci Transl Med.12 (567): eaay6218.
Kim, B., Kim, E.S., Yoo, Y., Bae, H., Chung, I.Y., Cho, Y. (2019). Phage-derived antibacterials: harnessing the simplicity, plasticity, and diversity of phages. Viruses.11 (3):268. https://doi.org/10.3390/v11030268.
Kim, D.S., Choi, H-I., Wang, Y. et. al. (2017).A new treatment strategy for Parkinson’s disease through the gut–brain axis: the glucagonlike peptide-1 receptor pathway. Cell Transplant. 26:1560–1571.
Kim, K.M., Yu, K.W., Kang, D.H., Suh, H.J. (2002). Anti-stress and anti-fatigue effect of fermented rice bran. Phyther. Res. an Int J. Devoted to Pharmacol. Toxicol. Eval. Nat. Prod.Deriv. 16:700–702
Kim, S. et al.,(2021). Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: pathologic roles and therapeutic implications. Transl Neurodegener. 10(1):1–23.
Kitaya, K., and Yasuo, T. (2023). Commonalities and Disparities between Endometriosis and Chronic Endometritis: Therapeutic Potential of Novel Antibiotic Treatment Strategy against Ectopic Endometrium. Int. J. Mol. Sci. 24: 2059. https://doi.org/10.3390/IJMS24032059.
Ko, C.Y., Lin, H-TV., Tsai, G.J. (2013). Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem. 48:559–568.
Kodali, V.P., Sen, R. (2008).Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol. J. 3: 245–251.
Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A, Org, E., Sheehy, B.T. et al., (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 19: 576–85. https://doi.org/10.1038/n m.3145.
Koziel, J., and Potempa, J. (2022). Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontol. 89: 83–98. https://doi.org/10.1111/PRD.12432.
Krishnamurthy, H.K., Pereira, M., Bosco, J., George, J., Jayaraman, V., Krishna, K., Wang, T., Bei, K. and Rajasekaran, J.J. (2023) Gut commensals and their metabolites in health and disease. Front. Microbiol. 14:1244293. https://doi.org/10.3389/fmicb.2023.1244293.
Krumbeck, J.A., Rasmussen, H.E., Hutkins, R.W. et. al.(2018). Probiotic Bifidobacterium strains and galacto-oligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome. 6:121. https://doi.org/10.1186/s40168-018-0494-4.
Laffin, M., Fedorak, R., Zalasky, A., Park, H., Gill, A., Agrawal, A. et al., (2019). A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci Rep. 9:12294.
Lakshmi, C.P., Ghoshal, U.C., Kumar, S., Goel, A., Misra, A., Mohindra, S. et al., (2010). Frequency and factors associated with small intestinal bacterial overgrowth in patients with cirrhosis of the liver and extra hepatic portal venous obstruction. DigDis Sci. 55(4):1142–8.
Lam, V., Su, J., Koprowski, S., Hsu, A., Tweddell, J.S., Rafiee, P., Gross, G.J., Salzman, N.H., Baker, J.E. (2012). Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 26 :1727–1735. https://doi.org/10.1096/fj.11-197921.
Lang, S., Demir, M., Martin, A., Jiang, L., Zhang, X., Duan, Y., Gao, B., Wisplinghoff, H., Kasper, P., Roderburg, C. et al., (2020). Intestinal Virome Signature Associated With Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology 159: 1839–1852. https://doi.org/10.1053/J.GASTRO.2020.07.005.
Lee, W.J. and Hase, K. (2014).Gut microbiota–generated metabolites in animal health and disease, Nat Chem Biol10: 416–424.
Lei, X., Zhang, W., Liu, T., Xiao, H., Liang, W., Xia, W. et al., (2013).Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-Induced neurodegeneration and memory impairment in neonatal rats. PLoS One. 8:645. https://doi.org/10.1371/journal.pone.0070645.
Leone, V., Gibbons, S.M., Martinez, K., Hutchison, A.L., Huang, E.Y., Cham, C.M et al., (2015). Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 17 (5):681–9.
Les Dethlefsen, S. H., Sogin, M. L., & Relman, D. A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology. 6(11): e280. https://doi.org/10.1371/journal.pbio.0060280.
Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., Geng, B., et al., (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 5: 14.
Li, L., Krause, L., Somerset, S. (2017). Associations between micronutrient intakes and gut microbiota in a group of adults with cystic fibrosis. Clinical Nutrition. 36:1097–104. https://doi.org/10.1016/j.clnu.2016.06.029.
Li, P., Zheng, J., Bai, Y., Wang, D., Cui, Z., Li, Y., Zhang, J., Wang, Y. (2020). Characterization of kynurenine pathway in GUT MICROBES 23patients with diarrhea-predominant irritable bowel syndrome. Eur J Histochem. 64. https://doi.org/10.4081/ejh.2020.3132.
Lindefeldt, M., Eng, A., Darban, H., Bjerkner, A., Zetterstr¨om, C.K, Allander, T. et al., (2019). The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes. 5 (1): 5.
Lindsay, J.O., Whelan, K., Stagg, A.J., Gobin, P., Al-Hassi, H.O.,Rayment, N., Kamm, M., Knight, S.C.,Forbes, A. (2006). Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with crohn’s disease. Gut. 55: 348–355.
Lindsay, K.L., Buss, C., Wadhwa, P.D., Entringer, S. (2019).The interplay between nutrition and stress in pregnancy: implications for fetal programming of brain development. BiolPsychiatry. 85:135–49. https://doi.org/10.1016/j.biopsych.2018.06.021
Ling, Z., Jin, C., Xie, T., Cheng, Y., Li, L., Wu, N. (2016). Alterations in the fecal microbiota of patients with HIV-1 infection: an observational study in a Chinese population. Sci Rep.6:30673.
Ling, Z., Li, Z., Liu, X., Cheng, Y., Luo, Y., Tong, X. et al.,(2014).Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 80(8):2546–54.
Liu, A., Gao, W., Zhu, Y., Hou, X., and Chu, H. (2022). Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins 14, 596. https://doi.org/10.3390/TOXINS14090596.
Liu, J., Liu, X., Xiong, X.Q., Yang, T., Cui, T., Hou, N.L. et al., (2017). Effect of vitamin A supplementation on gut microbiota in children with autism spectrum disorders - a pilot study.BMC Microbiol.17:204. https://doi.org/10.1186/s12866- 017- 1096- 1.
Liu, L., Poveda, C., Jenkins, P.E., Walton, G.E. (2021).An in vitro approach to studying the microbial community and impact of pre and probiotics under anorexia nervosa related dietary restrictions. Nutrients.13:4447
Liu, P., Liu, M., Liu, X., Xue, M., Jiang, Q., Lei, H. (2021). Effect of α- linolenic acid (ALA) on proliferation of probiotics and its adhesion to colonic epithelial cells. Food Sci Technol. 42:e71921. https://doi.org/10.1590/fst.71921.
Liu, S., Li, E., Sun, Z., Fu, D., Duan, G., Jiang, M. et al., (2019). Altered gut microbiota and short chain fatty acids in chinese children with autism spectrum disorder. Sci Rep. 9:30. https://doi.org/10.1038/s41598-018-36430-z
Long, K.Z., Santos, J.I., Rosado, J.L., Estrada-Garcia, T., Haas, M., Al Mamun, A. et al., (2011). Vitamin A supplementation modifies the association between mucosal innate and adaptive immune responses and resolution of enteric pathogen infections. Am J ClinNutr. 93:578–85. https://doi.org/10.3945/ajcn.110.003913.
Louis, P., Duncan, S.H., Sheridan, P.O., Walker, A.W., Flint, H.J. (2022).Microbial lactate utilisation and the stability of the gut microbiome. Gut Microbiome. 3:e3.
Louis, P., Flint, H.J., Michel, C. (2016).How to manipulate the microbiota: Prebiotics. In Microbiota of the Human Body; Springer: Basel, Switzerland, pp. 119–142.
Luang-In, V., Katisart, T., Konsue, A. et al., (2020). Psychobiotic effects of multi-strain probiotics originated from thai fermented foods in a rat model. Food Sci. Anim. Resour. 40:1014.
Luettig, J., Rosenthal, R., Barmeyer, C., Schulzke, J. (2015). Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers. 3:e977176.
Luna, R.A., Oezguen, N., Balderas, M., Venkatachalam, A., Runge, J.K, Versalovic, J. et al., (2017). Distinct microbiome-Neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. CMGH. 3: 8. https://doi.org/10.1016/j.jcmgh.2016.11.008.
Luster, A.D., Alon, R., von Andrian, U.H. (2005). Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 6: 1182-1190.
Lyte, M., Li, W., Opitz, N. et. al. (2006). Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacterrodentium. Physiol Behav 89:350–357.
Ma, N., Tian, Y., Wu, Y., Ma, X. (2017). Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci. 18: 795–808.
Mesnage, R., Grundler, F., Schwiertz, A., Le Maho, Y., Wilhelmi de Toledo, F. (2019). Changes in human gut microbiota composition are linked to the energy metabolic switch during 10 d of Buchinger fasting. J. Nutr. Sci. 8: e36.
Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., Belzer, C., Delgado Palacio, S., Arboleya Montes, S., Mancabelli, L., et al., (2017).The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 81; 10–1128.
Mohammadi, A.A., Jazayeri, S., Khosravi-Darani, K. et al., (2016). The effects of probiotics on mental health and hypothalamic–pituitary–adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr. Neurosci. 19:387–395.
Mohammadi, G., Dargahi, L., Peymani, A.,Mirzanejad, Y., Alizadeh, S.A., Naserpour, T., Nassiri-Asl, M. (2019). The Effects of Probiotic Formulation Pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a Lipopolysaccharide Rat Model. J. Am. Coll. Nutr. 38: 209–217.
Moon, K.T. (2010). Preventing psychotic disorders in high-risk patients. Am Fam Physician. 82.
Mousavi, S., Bereswill, S., Heimesaat, M.M. (2019). Immunomodulatory and Antimicrobial Effects of Vitamin C. Eur J Microbiol Immunol (Bp).9: 73–9. https://doi.org/10.1556/1886.2019.00016.
Mu, C., Yang, Y., Yu, K., Yu, M., Zhang, C., Su, Y., & Zhu, W. (2017). Alteration of metabolomic markers of amino?acid metabolism in piglets with in?feed antibiotics. AminoAcids, 49(4): 771–781. https://doi.org/10.1007/s00726-017-2379-4.
Mudd, A.T., Alexander, L.S., Berding, K., Waworuntu, R.V., Berg, B.M., Donovan, S.M., Dilger, R.N. (2016). Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Front. Pediatr. 4: 4.
Mukherjee, A. Lordan, C. Ross, R.P. Cotter, P.D. Cronin, P. Joyce, S.A. O’Toole, P.W. O’Connor, E.M. Chen, L. Liu, B. et al., (2020). Increasing levels of Parasutterella in the gut microbiome correlate with improving low-density lipoprotein levels in healthy adults consuming resistant potato starch during a randomised trial. Sci. Rep. 13: 8096.
Mukherjee, A., Lordan, C., Ross, R.P., Cotter, P.D. (2024). Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes. 12 (1): 1802866. https://doi.org/10.1080/19490976.2020.1802866.
Müller, J.B., Guggenheim, P., Haemmerli, U. (1966). Treatment of chronic portal-systemic encephalopathy with lactulose. Lancet. 287: 890–893.
Muthuirulandi Sethuvel, D.P., Subramanian, N., Pragasam, A.K., Inbanathan, F.Y., Gupta, P., Johnson, J., Sharma, N.C., Hemvani, N., Veeraraghavan, B., Anandan, S. et al., (2019). Insights to the diphtheria toxin encoding prophages amongst clinical isolates of Corynebacterium diphtheriae from India. Indian J Med Microbiol. 37(3):423–425. https://doi.org/10.4103/ijmm.ijmm_19_469.
Nagamine, T., Sato, N., Seo, G. (2012). Probiotics reduce negative symptoms of schizophrenia: a case report. Int. Med. J. 19:72–73.
Neurath, M. (2014). Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14: 329–342.
Neyrinck, A.M., Rodriguez, J., Zhang, Z.,Seethaler, B., Sánchez, C.R., Roumain, M., Hiel, S., Bindels, L.B., Cani, P.D., Paquot, N. et al.,(2021). Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: Results from the Food4Gut randomized placebo-controlled trial. Eur. J. Nutr. 60: 3159–3170.
Nimgampalle, M., Kuna, Y. (2017). Anti-Alzheimer Properties of Probiotic, Lactobacillusplantarum MTCC 1325 in Alzheimer’s Disease induced Albino Rats. J. Clin. Diagn. Res., 11: KC01–KC05.
Nishida, K., Sawada. D., Kuwano.Y., Tanaka. H., Rokutan. K. (2019). Health benefits of Lactobacillus gasseri CP2305 tablets in young adults exposed to chronic stress: a randomized, double-blind, placebo-controlled study. Nutrients. 11 (8):1859. https://doi.org/10.3390/nu11081859.
Nocerino, R., Paparo, L., Terrin, G., Pezzella, V., Amoroso, A., Cosenza, L., Cecere, G., De Marco, G., Micillo, M., Albano, F. et al., (2017). Cow’s milk and rice fermented with Lactobacillus paracasei CBA L74 prevent infectious diseases in children: a randomized controlled trial. Clin Nutr. 36:118–125. https://doi.org/10.1016/j.clnu.2015. 12. 004.
Noriega, B.S., Sanchez-Gonzalez, M.A., Salyakina, D., Coffman, J. (2016).Understanding the impact of omega-3 rich diet on the gut microbiota. Case Rep Med: 3089303.
Wortelboer, K., Nieuwdorp, M., Herrema, H. (2019). Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine. 44:716-729.
Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight R. et al., (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science. 334: 105–108.
Wu, H., Ma, Y., Peng, X., Qiu, W., Kong, L., Ren, B., et al.,(2020). Antibiotic-induced dysbiosis of the rat oral and gut microbiota and resistance to Salmonella. Arch Oral Biol. 114:104730. https://doi.org/10.1016/j.archoralbio.2020.104730
Xu, Y., Wang, N., Tan, H.Y., Li, S., Zhang, C., Feng, Y. (2022).Function of Akkermansiamuciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front microbiol [internet]:11. https://www.frontiersin.org/articles/10.3389/fmicb.2020.00219 2020.
Yan, Q., Gu, Y., Li, X., Yang, W., Jia, L., Chen, C., Han, X., Huang, Y., Zhao, L., Li, P. et al., (2017). Alterations of the Gut Microbiome in Hypertension. Front. Cell. Infect. Microbiol. 7: 381. https://doi.org/10.3389/FCIMB.2017.00381.
Yang, K., Niu, J., Zuo, T., Sun, Y., Xu, Z., Tang, W., Liu, Q., Zhang, J., Ng, E.K.W., Wong, S.K.H., et al., (2021). Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology. 161: 1257–1269.e13. https://doi.org/10.1053/J.GASTRO.2021.06.056.
Yolken, R.H., Jones-Brando, L., Dunigan, D.D., Kannan, G., Dickerson, F., Severance, E. et al., (2014). Chlorovirus aTCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice. Proc Natl Acad Sci USA. 111:16106–11. https://doi.org/10.1073/pnas.1418895111
Yolken, R.H., Severance, E.G., Sabunciyan, S., Gressitt, K.L., Chen, O., Stallings, C. et al., (2015).Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophr Bull. 41:197 https://doi.org/10.1093/schbul/sbu197.
Younge, N.E., Newgard, C.B., Cotton, C.M., Goldberg, R.N, Muehlbauer, M.J., Bain, J.R. et al., (2019).Disrupted maturation of the microbiota and metabolome among extremely preterm infants with postnatal growth failure. Sci Rep. 9:547. https://doi.org/10.1038/s41598-019-44547-y.
Yu, L.M., Zhao, K.J., Wang, S.S., Wang, X., Lu, B. (2018). Gas chromatography/mass spectrometry based metabolomic study in a murine model of irritable bowel syndrome. World J Gastroenterol. 24(8):894–904. https://doi.org/10.3748/wjg.v24.i8.894
Zaibi, M.S., Stocker, C.J., O’Dowd, J. et al., (2010). Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584: 2381-2386.
Ze, X., Duncan, S.H.; Louis, P.; Flint, H.J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012, 6, 1535–1543.
Zhang, X., G´erard, P. (2022). Diet-gut microbiota interactions on cardiovascular disease. Comput Struct BiotechnolJ. 20:1528–40.
Zhao, G., Vatanen, T., Droit, L., Park, A., Kostic, A.D., Poon, T.W. et al., (2017).Intestinal virome changes precede autoimmunity in type 1 diabetes susceptible children. Proc Natl Acad Sci USA. 114:114. https://doi.org/10.1073/pnas.1706359114.
Zheng, Lie, Yong-Yi Ji, Xin, Li Wen, Sheng-Lei, Duan. (2022). Fecal microbiota transplantation in the metabolic diseases: Current status and perspectives World J Gastroenterol. 28(23): 2546-2560. https://doi.org/10.3748/wjg.v28.i23.2546 ISSN 1007-9327 (print) ISSN 2219-2840 (online).
Zhou, W., Liu, G.-R., Li, P.-L., Dai, Y.-Q., Zhou, K. (2007). Mode of action of plantaricin L-1, an antilisteria bacteriocin produced by Lactobacillus plantarum. Acta Microbiol. Sin., 47, 260–264.
Zhou, X., Qi, W., Hong, T., Xiong, T., Gong, D., Xie, M., Nie, S. P. (2018). Exopolysaccharides from Lactobacillus plantarum NCU116. Regulate Intestinal Barrier Function via STAT3 Signaling Pathway. J. Agric. Food Chem. 66: 9719–9727.
Zhu, W., Gregory, J.C., Org, E. et al., (2016).Gut microbial metabolite TMAO enhances platelet hyper-reactivity and thrombosis risk.Cell.165:111–124. https://doi.org/10.1016/j.cell.2016.02.011.
Zuo, T., Wong, S.H., Lam, K., Lui, R., Cheung, K., Tang, W. et al., (2018). Bacteriophage transfer during faecal microbiota transplantation in clostridium difficile infection is associated with treatment outcome. Gut. 67:634–43. https://doi.org/10.1136/gutjnl-2017-313952.
![]() |
![]() |
![]() |
![]() |
![]() |