National Academy of Agricultural Sciences (NAAS)
|
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Trichoderma, a genus of soil fungi, holds considerable economic importance due to its wide distribution across various climates and its ability to thrive in soils subjected to stressors like salinity, alkalinity, nutrient deficiencies, and drought. This review provides an in-depth analysis of the potential applications and role of Trichoderma in enhancing sustainable agriculture. It begins by exploring how Trichoderma species foster plant growth and development, particularly under biotic and abiotic stress conditions, while offering protection against plant pathogens. The article also examines the agricultural uses of Trichoderma, including its role as a biocontrol agent and biofertilizer, which contribute to more sustainable farming practices. However, agricultural chemicals, such as fungicides, can negatively impact Trichoderma species. Despite these challenges, the review emphasizes the significant benefits of integrating Trichoderma into farming, including improvements in soil quality, enhanced agricultural productivity, and reduced reliance on chemical pesticides. Moreover, Trichoderma’s ability to interact with plants through root colonization and act as a plant growth enhancer for a wide range of crops further underscores its potential. The safety, affordability, efficacy, and eco-friendly nature of Trichoderma spp. make them a promising option for advancing sustainable agriculture.
Abdullah, N. S., Doni, F., Awal, M. A., Mispan, M. S., Saiman, M. Z., Mohd-Yusuf, Y., & Suhaimi, N. S. M. (2024). Multi-omics tools for understanding Trichoderma-plant symbiosis: Biotechnological developments and future directions. Symbiosis, 93(2), 125–138. https://doi.org/10.1007/s13199-024-00996-2
Abdel-lateif, K.S. (2017). Trichoderma as biological control weapon against soil borne plant pathogens. Afr. J. Biotechnology. 16(50): 2299-2306. http://dx.doi.org/10.5897/AJB2017.16270
Akbari, S. I., Prismantoro, D., Permadi, N., Rossiana, N., Miranti, M., Mispan, M. S., Mohamed, Z., & Doni, F. (2024). Bioprospecting the roles of Trichoderma in alleviating plants’ drought tolerance: Principles, mechanisms of action, and prospects. Microbiological Research, 283, 127665. https://doi.org/10.1016/j.micres.2024.127665
Asad, S. A. (2022). Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - a review. Ecological Complexity, 49, 100978. https://doi.org/10.1016/j.ecocom.2021.100978
Asghar W., Kataoka R. 2021. Effect of co-application of Trichoderma spp. With organic composts on plant growth enhancement, soil enzymes and fungal community in soil. Archives of Microbiology, 203 (7): 4281–4291. https://doi.org/10.1007/s00203-021-02413-4
Awad-Allah, E.F.A., Shams, A.H.M., Helaly, A.A., Ragheb, E.I.M. (2022). Effective Applications of Trichoderma spp. as Biofertilizers and Biocontrol Agents Mitigate Tomato Fusarium Wilt Disease. Agriculture. 12(11), 1950. https://doi.org/10.3390/agriculture12111950
Azad K., Kaminskyj S. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis. 2016;68:73–78. https://doi.org/10.1007/s13199-015-0370-y
Baazeem A., Almanea A., Manikandan P., Alorabi M., Vijayaraghavan P., Abdel-Hadi A. 2021. In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum FB10 and its secondary metabolites. Journal of Fungi, 7 (5): 331. https://doi.org/10.3390/jof7050331
Badawy MI, Ghaly MY, Gad-Allah TA (2006) Advanced oxidation processes for the removal of organo phosphorus pesticides from wastewater. Desalination 194:166–175. https://doi.org/10.1016/j.desal.2005.09.027
Baiyee B., Pornsuriya C., Ito S. I., Sunpapao A. 2019. Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biological Control, 129: 195–200. https://doi.org/10.1038/s41598-017-08391-2
Bardgett, R., van der Putten, W. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014). https://doi.org/10.1038/nature13855.
Benitez, T., Rincón, A.M., Limón, M.C., Codon, A.C. (2004). Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7(4): 249-260. https://doi.org/10.2436/IM.V7I4.9480.
Belaidi, H., Benali, F.T., Benzohra, I.E., Megateli, M., Boumaaza, B., Megherbi, A. and Bouzidi, M.A. (2022). Biocontrol capacity of the soil fungus Trichoderma harzianum against Fusarim oxysporum f. sp. albedinis, a causal agent of fusarium wilt (Bayoud) disease of date palm (Phoenix dactylifera L.). Agricultural Science Digest. 42(4): 385- 392. https://doi.org/10.18805/ag.D-372
Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard [Brassica juncea (L.) Int.J.Curr.Microbiol.App.Sci (2020) 9(2): 3051-3058 3056 Coss.var. foliosa Bailey] in Cd, Ni contaminated soils. Chemosphere 71:1769–1773. https://doi.org/10.1016/j.chemosphere.2008.01.066
Chen J. L., Sun S. Z., Miao C. P., Wu K., Chen Y. W., Xu L. H., Guan H. L., Zhao L. X. 2016. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. Journal of Ginseng Research, 40 (4): 315–324. https://doi.org/10.1038/s41598-017-08391-2
Chaverri, P., Castlebury, L.A., Overton, B.E., Samuels, G.J., 2003. Hypocrea/ Trichoderma: Species with conidiophore elongations and green conidia. Molecular Phylogenetics and Evolution 27(2):302-13. https://doi.org/10.1016/S1055-7903(02)00400-1
Contreras-Cornejo X.A., Macías-Rodríguez L., del-Val E., Larsen J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol. Ecol. 2016; 92:1–17. https://doi.org/10.1093/femsec/fiw036.
Doni, F., Fathurrahman, F., Mispan, M. S., Suhaimi, N. S. M., Yusoff, W. M. W., & Uphoff, N. (2019). Transcriptomic profiling of rice seedlings inoculated with the symbiotic fungus Trichoderma asperellum SL2. Journal of Plant Growth Regulation, 38(4), 1507–1515. https://doi.org/10.1007/s00344-019-09952-7
Doni, F., Miranti, M., Mispan, M. S., Mohamed, Z., & Uphoff, N. (2022). Multi-omics approaches for deciphering the microbial modulation of plants’ genetic potentials: What’s known and what’s next? Rhizosphere, 24, 100613. https://doi.org/10.1016/j.rhisph.2022.100613
Dutta, P., Deb, L., Pandey, A. K. (2022b). Trichoderma-from lab bench to field application: looking back over 50 years. Front. Agron. 4, 932839. https://doi.org/10.3389/fagro.2022.932839
Dutta, P., Mahanta, M., Singh, S. B., Thakuria, D., Deb, L., Kumari, A., Upamanya, G. K., Boruah, S., Dey, U., Mishra, A. K., Vanlaltani, L., Vijay Reddy, D., Heisnam, P., & Pandey, A. K. (2023). Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Frontiers in Plant Science, 14, 1145715. https://doi.org/10.3389/fpls.2023.1145715
ElKomy, M. H., Sahel, A.A., Eranthodi, A., Molan, A., 2015. Characterization of novel Trichoderma asperellum isolate to select effective biocontrol agent tomato fusarium wilt. Plant Pathol. J. 101, 597-608.
Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop protection, 19(8-10), 709-714. https://doi.org/10.1016/S0261-2194(00)00094-6
Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143. https://doi.org/10.1016/s0045-6535(02)00485-x
Fu J., Xiao Y., Wang Y. F., Yang K. J. 2019. Trichoderma affects the physiochemical characteristics and bacterial community composition of saline-alkaline maize rhizosphere soils in the cold region of Heilongjiang Province. Plant and Soil, 436 (1–2): 211–227. https://doi.org/10.1038/s41598-017-08391-2
Gajera H., Domadiya R., Patel S., Kapopara M., Golakiya B. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system—A review. Curr. Res. Microbiol. Biotechnol. 2013;1:133–142.
Ghorbanpour M., Omidvari M., Abbaszadeh-Dahaji P., Omidvar R., Kariman K. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control. 2018;117:147–157. https://doi.org/10.1016/j.biocontrol.2017.11.006
Guzmán-Guzmán, P., Kumar, A., de los SantosVillalobos, S., Parra-Cota, F. I., Orozco-Mosqueda, M. d C., Fadiji, A. E., Hyder, S., Babalola, O. O., & Santoyo, G. (2023). Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—a review. Plants, 12(3), 432. https://doi.org/10.3390/plants12030432
Hajieghrari B (2010) Effect of some metal-containing compounds and fertilizers on mycoparasite Trichoderma species mycelia growth response. Afr J Biotechnol 9:4025–4033.
Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43– 56. https://doi.org/10.1038/nrmicro797
Harman, G. E., Doni, F., Khadka, R. B., & Uphoff, N. (2021). Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology, 130(2), 529–546. https://doi.org/10.1111/jam.14368
Halifu S., Deng X., Song X. S., Song R. Q. 2019. Effects of two Trichoderma strains on growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10 (9): 758. https://doi.org/10.3390/f10090758
Hung T., Uchihama D., Ochi S., Yasuoka Y. 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 8 (1): 34–48. https://doi.org/10.1038/s41598-017-08391-2
Hossain, M. M., Sultana, F., & Islam, S. (2017). Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. Plant-Microbe Interactions in Agro-Ecological Perspectives, 2, 135–191. https://doi.org/10.1007/978-981-10-6593-4_6
Janati, W., Benmird, B., Elhaissoufi, W., Zreoual, Y., Nasielski, J., Bargaz., A., 2021. Will phosphate bio-solubilization stimulate the biological nitrogen fixation in grain legumes. Front. Agron., 637196. https://doi.org/10.3389/fagro.2021.637196
Kumar, R., Samanta, P., Vijay Raj, S., Bera, P., & Naimuddin, M. (2023). Potential and prospects of Trichoderma in plant protection. Advances in Agriculture, 2023, 1–11. https://doi.org/10.1155/2023/5573662
Liu Q. M., Meng X. H., Li T., Raza W., Liu D. Y., Shen Q. R. 2020. The growth promotion of peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-based biological organic fertilizer: Possible role of increasing nutrient availabilities. Microorganisms, 8 (9): 1296. https://doi.org/10.3390/microorganisms8091296
Manzar, N., Kashyap, A. S., Goutam, R. S., Rajawat, M. V. S., Sharma, P. K., Sharma, S. K., & Singh, H. V. (2022). Trichoderma: Advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential. Sustainability, 14(19), 12786. https://doi.org/10.3390/su141912786
Mehetre, S.T., Mkherjee, P.K. (2015). Trichoderma Improves Nutrient use Efficiency in Crop Plants. In: Nutrient use Efficiency: From Basics to Advances. [Rakshit, A., Singh, H.B., Sen, A. (eds)] Springer India. pp 173-180. http://dx.doi.org/10.1007/978-81-322-2169-2_11
Mishra A, Nautiyal CS (2009) Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuelspiked soil amended with Trichoderma ressei using sole-carbonsource utilization profiles. World J MicrobiolBiotechnol 25:1175–1180. http://dx.doi.org/10.1007/s11274-009-9998-1
Mukherjee I, Gopal M (1996) Degradation of chlorpyrifos by two soil fungi Aspergillus niger and Trichoderma viride. Toxicol Environ Chem 57:145– 151. https://doi.org/10.1080/02772249609358383
Mukhopadhyay, R., Kumar, D. (2020). Trichoderma: A beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt. J. Biol. Pest Control. 30: 1-8. https://doi.org/10.1186/s41938-020-00333-x
Naher, L., Yusuf, U.K., Ismail. A., Hossain, K., 2014. Trichoderma spp.:biocontrol agent for sustainable management of plant diseases. Pak.J.Bot. 46.1889-1493.
Ochoa-Villarreal, M., Aispuro-Hernandez, E., Vargas, Arispuro, I., Martine Tellez, M.A., 2012. Plant cell wall polymers: function, structure and biological activity of their derivates. Polymerization, 4, 63-86.
Olowe O. M., Nicola L., Asemoloye M. D., Akinlolu A. O., Babalola O. O. 2022. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiological Research, 257: 126978. https://doi.org/10.1016/j.micres.2022.126978
Palmieri, D., Ianiri, G., Del Grosso, C., Barone, G., De Curtis, F., Castoria, R., & Lima, G. (2022). Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae, 8(7), 577. https://doi.org/10.3390/horticulturae8070577
Pashin YV, Bakhitova LM (1979) Mutagenic and carcinogenic properties of polycyclic aromatic hydrocarbons. Environ Health Pers 30:185–189. https://doi.org/10.1289/ehp.7930185
Parmar, H.J., Bodar, N.P., Lakhani, H.N., Patel, S.V., Umrania, V.V., Hassan, M.M. (2015). Production of lytic enzymes by Trichoderma strains during in vitro antagonism with Sclerotium rolfsii, the causal agent of stem rot of groundnut. Afr. J. Microbiol. Res. 9(6): 365-372.
Peng, Y., Li, S. J., Yan, J., Tang, Y., Cheng, J. P., Gao, A. J., Yao, X., Ruan, J. J., & Xu, B. L. (2021). Research progress on phytopathogenic fungi and their role as biocontrol agents. Frontiers in MIcrobiology, 12, 670135. https://doi.org/10.3389/fmicb.2021.670135
Poveda J. 2021. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biological Control, 159: 104634. https://doi.org/10.1038/s41598-017-08391-2
Randhawa, J.S., Sharma, R., Chhina, G.S. and Kaur, M. (2020). Effect of integrated nutrient management on productivity and quality of malt barley (Hordeum distichon L.). Agricultural Science Digest. 40(3): 265-269. http://dx.doi.org/10.18805/ag.D-4980
Rawat, K., Tripathi, S. B., Kaushik, N., & Bashyal, B. M. (2022). Management of Bakanae disease of rice using biocontrol agents and insights into their biocontrol mechanisms. Archives of Microbiology, 204(7), 401. https://doi.org/10.1007/s00203-022-02999-3
Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J., Alcántara, E., Angulo, M., & Pérez-Vicente, R. (2019). Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Science, 10(287), 287. https://doi.org/10.3389/fpls.2019.00287
Saravanakumar, K., Li, Y., Yu, C., Wang, Q.Q., Wang, M., Sun, J., Gao, J.X. and Chen, J., 2017. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Scientific reports, 7(1), p.1771. https://doi.org/10.1038/s41598-017-01680-w
Saldaña-Mendoza, S. A., Pacios-Michelena, S., Palacios-Ponce, A. S., Chávez-González, M. L., & Aguilar, C. N. (2023). Trichoderma as a biological control agent: Mechanisms of action, benefits for crops and development of formulations. World Journal of Microbiology & Biotechnology, 39(10), 269. https://doi.org/10.1007/s11274-023-03695-0
Shanmugaraj, C., Kamil, D., Kundu, A., Singh, P. K., Das, A., Hussain, Z., Gogoi, R., Shashank, P. R., Gangaraj, R., & Chaithra, M. (2023). Exploring the potential biocontrol isolates of Trichoderma asperellum for management of collar rot disease in tomato. Horticulturae, 9(10), 1116. https://doi.org/10.3390/horticulturae9101116
Sharma, A., 2019. Fungi as biocontrol agents. Biofertil. SustainAgri. Environ. 395-411. http://dx.doi.org/10.1007/978-3-030-18933-4_18
Sharma, R., Magotra, A., Manhas, R. S., & Chaubey, A. (2017). Antagonistic potential of a psychrotrophic fungus: Trichoderma velutinum ACR-P1. Biological Control, 115, 12–17. https://doi.org/10.1016/j.biocontrol.2017.08.024
Sharma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Suttee, A., Singh, G., Barnwal, R. P., & Singla, N. (2020). Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety, 201, 110812. https://doi.org/10.1016/j.ecoenv.2020.110812
Shi L. R., Zheng W., Lei T., Liu X. S., Hui M. X. 2021. The effect of different soil amendments on soil properties and on the morphological and physiological characteristics of Chinese cabbage. Journal of Soil Science and Plant Nutrition, 21: 1500–1510. https://doi.org/10.1007/s42729-021-00456-6
Subedi, P., Gattoni, K., Liu, W., Lawrence, K.S., Park, S.W., 2020. Current utility of growth- promoting rhizobacteria as biological control agent towards plant parasitic- nematodes.Plant-9, 1167. https://doi.org/10.3390/plants9091167
Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M., Araniti, F., & Sharma, A. (2020). Trichoderma: The “Secrets” of a multitalented biocontrol agent. Plants, 9(6), 762. https://doi.org/10.3390/plants9060762
Srivastava, M., Kumar, V., Shahid, M., Pandey, S., Singh, A. (2016). Trichoderma-a potential and effective bio-fungicide and alternative source against notable phytopathogens: A review. Afr. J. Agric. Res. 11(5): 310-316. http://dx.doi.org/10.5897/AJAR2015.9568
Srinivasulu, B., Sabitha Doraisamy, Aruna, K., Rao, D.V.R. and Rabindran, R. 2002b.Efficacy of bio-control agents, chemicals and botanicals on Ganoderma sp., the coconut basal stem rot pathogen. J. Plant. Crops., 30:57-59.
Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Tot Environ 409:2430–2442. https://doi.org/10.1016/j.scitotenv.2011.03.002
Stenberg, J. A., Sundh, I., Becher, P. G., Björkman, C., Dubey, M., Egan, P. A., Friberg, H., Gil, J. F., Jensen, D. F., Jonsson, M., Karlsson, M., Khalil, S., Ninkovic, V., Rehermann, G., Vetukuri, R. R., &Viketoft, M. (2021). When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 94(3), 665–676. https://doi.org/10.1007/s10340-021-01354-7
Tabet JC, Lichtenstein EP (1976) Degradation of [14C] photodieldrin by Trichoderma viride as affected by other insecticides. Can J Microbiol 22:1345–1356. https://doi.org/10.1139/m76-198
Thakur, R. (2021). Use of Trichoderma spp. as biocontrol for disease management. Indian Farmer, 8(01), 1–9. Google Scholar
Thambugala, K. M., Daranagama, D. A., Phillips, A. J. L., Kannangara, S. D., & Promputtha, I. (2020). Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology, 10(604923), 604923. https://doi.org/10.3389/fcimb.2020.604923
Tewari, S., Pooniya, V., Sharma, S., 2020. Next generations bioformulations by amalgamating Bradyrhizobium, cell free culture supernatant, and exopolysaccharide enhances the indigenous rhizospheric rhizobial population, nodulation and productivity of pigeon pea. Appl. Soil Ecol.147, 103363. https://doi.org/10.1016/j.apsoil.2019.103363
Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165. https://doi.org/10.1016/j.tibtech.2007.02.003
Tripathi, P., Singh, P.C., Mishra, A., Chauhan, P.S., Dwivedi, S., Bais, R.T., Tripathi, R.D. (2013). Trichoderma: A potential bioremediator for environmental cleanup. Clean Techn. Environ. Policy. 15(4): 541-550. http://dx.doi.org/10.1007/s10098-012-0553-7
Ty?kiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-?cise?, J. (2022). Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 2329. https://doi.org/10.3390/ijms23042329
Manish Kumar, Pramod Kumar Fatehpuria, Syed Kamran Ahmad, Arshi Jamil and Naresh Dhakar. 2020. Application of trichoderma spp. Restoration in soil health. Int.J.Curr.Microbiol.App.Sci. 9(02): 3051-3058. https://doi.org/10.20546/ijcmas.2020.902.351
Vázquez, María Belén, Viviana Barrera, and Virginia Bianchinotti. 2015. Molecular identification of three isolates of Trichoderma harzianum isolated from agricultural soils in Argentina, and their abilities to detoxify in vitro metsulfuron methyl. Botany. 93(11): 793-800. https://doi.org/10.1139/cjb-2015-0085
Vinale F., Girona I. A., Nigro M., Mazzei P., Piccolo A., Ruocco M., Woo S., Ruano-Rosa D., Herrera C. L., Lorito M. 2012. Cerinolactone, a hydroxy-lactone derivative from Trichoderma cerinum. Journal of Natural Products, 75 (1): 103–106. https://doi.org/10.1038/s41598-017-08391-2
Wang C., Zhuang W. Y. 2019. Evaluating effective Trichoderma isolates for control of Rhizoconiasolani causing root rot of Vigna unguiculata. Journal of Integrative Agriculture, 18: 2–9. https://doi.org/10.1038/s41598-017-08391-2
Yan Y. R., Mao Q., Wang Y. Q., Zhao J. J., Fu Y. L., Yang Z. K., Peng X. H., Zhang M. K., Bai B., Liu A. R., Chen S. C., Ahammed G. J. 2021. Trichoderma harzianum induces resistance to root-knot nematodes by increasing secondary metabolite synthesis and defense-related enzyme activity in Solanum lycopersicum L. Biological Control, 158: 104609. https://doi.org/10.1016/j.biocontrol.2021.104609
Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology, 14 1160551. https://doi.org/10.3389/fmicb.2023.1160551
Zaidi, A., Khan, M. S., Rizvi, A, Saif, S., Ahmad, B., Shahid, M., 2017. Role of phosphate- solubilizing bacteria in legume improvement. Microbes for Legume improvement Spinger, PP. 175-197. http://dx.doi.org/10.1007/978-3-319-59174-2_8
Zafra, G., Moreno-Montaño, A., Absalón, Á.E. et al., Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ Sci Pollut Res 22, 1034–1042 (2015). https://doi.org/10.1007/s11356-014-3357-y
Zehra, A., Raytekar, N. A., Meena, M., & Swapnil, P. (2021). Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: a review. Current Research in Microbial Sciences, 2, 100054. https://doi.org/10.1016/j.crmicr.2021.100054
Zeilinger, S., Gruber, S., Bansal, R., & Mukherjee, P. K. (2016). Secondary metabolism in Trichoderma - chemistry meets genomics. Fungal Biology Reviews, 30(2), 74–90. https://doi.org/10.1016/j.fbr.2016.05.001
Zhang S., Gan Y., Xu B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant Sci. 2016;7:1405. https://doi.org/10.3389/fpls.2016.01405
Zhang, F., Huo, Y., Cobb, A.B., Luo, G., Zhou, J., Yang, G., et al., (2018). Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities and improved grassland biomass. Front. Microbiol. 9: 848. https://doi.org/10.1038/s41598-017-08391-2
Zhu L. X., Zhang F. L., Li L. L., Liu T. X. 2021. Soil C and aggregate stability were promoted by bio-fertilizer on the North China Plain. Journal of Soil Science and Plant Nutrition, 21: 2355–2363. https://doi.org/10.1038/s41598-017-08391-2
Zin N. A., Badaluddin N. A. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65: 168–178. https://doi.org/10.1038/s41598-017-08391-2![]() |
![]() |
![]() |
![]() |
![]() |