![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Salinity is detrimental for crop growth as it hampers agricultural productivity impacting food sustainability. The response of salt stress on germination, seedling growth and proline content was studied in kidney beans (Phaseolus vulgaaris L.) under in vitro and in vivo conditions. Seeds were germinated in vitro on Murashige and Skoog’s basal medium containing NaCl (0, 50 and 100 mM). Pot culture method was used for in vivo studies and the seedlings were irrigated by Hoagland nutrient solution supplemented with NaCl (0, 50 mM and 100 mM). Under the influence of salt stress, the time required for germination increased while germination percentage, shoot/root length and fresh weight of seedlings declined. The shoot length was more impacted compared to root length resulting in increment of root to shoot ratio. The germination stress tolerance index, seedling vigor index, shoot and root length stress tolerance index declined with increment in salt stress. Proline content doubled at higher stress levels both under in vitro and in vivo conditions. Understanding the impact of salt stress in kidney beans is helpful in selecting varieties better adapted towards saline environments for ensuring sustainable production.
Acosta-Motos, J. R., Ortuno, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J. and Hernandez, J. A. Plant Responses to salt stress: Adaptive Mechanisms. Agronomy, 2017, 7: 18. https://doi:10.3390/agronomy7010018
Ahmadian, S. and Bayat, F. Morpho-biochemical responses to salinity tolerance in common bean (Phaseolus vulgaris L.). African Journal of Agricultural Research, 2016, 11(15): 1289-1298. https://doi.org/10.5897/AJAR2015.10100
Baki, A.A. and Anderson, J.D. Vigor determination in soyabean by multiple criteria. Crop Science, 1973, 13: 630-633.
Bates, L.S., Waldren, R.P. and Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil, 1973, 39:205-207.
Bhartiya, A., Bajeli, J., Aditya, J. P., Pal, R.S., Stanley, J., Singh, S. and Kant, L. Kidney bean-A high value cash crop for nutritional and livelihood security. Indian Farming, 2017, 67(4): 11-13.
Cavusoglu, A. Salinity stress as an abiotic factor at germination stage on dry bean (Phaseolus vulgaris L.) cultivars. Current Trends in Natural Sciences, 2023, 12 (23): 17-27. https://doi.org/10.47068/ctns.2023.v12i23.002
Chele, K.H., Tinte, M.M., Piater, L.A., Dubery, I.A. and Tugizimana, F. Soil salinity, a serious environmental issue and plant responses: A metabolomic perspective. Metabolites, 2021, 11:724. https://doi.org/10.3390/metabo11110724
Cirka et al., 2021
Cirka, M., Tuncturk, R., Kulaz, H. and Tuncturk, M. Effect of salt stress on some growth parameters and biochemical changes in bean (Phaseolus vulgaris L.). ACTA ScientiarumPolonorumHortorum Cultus, 2022, 21(3): 53-63. https://doi.org/10.24326/asphc.2022.3.5
Cokkizgin, A. Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. NotulaeBotanicae Horti Agrobotanini Cluj-Napoca, 2012, 40 (1):171-182. https://doi.org/10.15835/nbha4017493
Dikobe, T.B., Mashile, B., Sinthumule, R. R. and Ruzvidzo, O. Distinct morpho-physiological responses of Maize to salinity stress. American Journal of Plant Sciences, 2021, 12: 946-959. https://doi.org/10.4236/ajps.2021.126064
FAO. 2024. Global status of salt-affected soils-Main report. Rome. https://doi.org/10.4060/cd3044en
FAOSTAT. Food and Agriculture Organization Statistical Database. 2022 https://www.fao.org/faostat/en/
Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H.M., Alghamdi, S.S. and Siddique, K. H. M. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology Biochemistry, 2017, 118:199-217. https://doi.org/10.1016/j.plaphy.2017.06.020
Gama, P.B.S., Inanaga, S., Tanaka, K. and Nakazawa, R. Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. African Journal of Biotechnology, 2007, 6 (2):079-088. https://doi.org/10.5897/AJB06.489
Ghosh, U.K., Islam, M.N., Siddiqu,i M.N., Cao, X. and Khan, M.A.R. Proline, a multifaceted signaling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biology, 2022, 24(2):227-239. https://doi.org/10.1111/plb.13363
Irik, H.A. and Bikmaz, G. Effect of different salinity on seed germination, growth parameters and biochemical contents of pumpkin (Cucurbita pepo L.) seed genotypes. Scientific Reports, 2024, 14: 6929. https://doi.org/10.1038/s41598-024-55325-w
Jameel, J., Anwar, T., Majeed, S., Qureshi, H., Siddiqui, E.H., Sana, S., Zaman, W. and Ali, H.M. Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms. BMC Plant Biology, 2024, 24:128. https://doi.org/10.1186/s12870-024-04836-9.
Jimenez-Bremont, J.F., Becerra-Flora, A., Hernandez-Lucero, E., Rodriguez-Kessler, M., Acosta-Gallegos, J.A. and Ramirez-Pimentel, J.G. Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biologia Plantarum, 2006, 50 (4): 763-766. https://doi.org/10.1007/s10535-006-0126-x
Kaymakanova, M. Effect of salinity on germination and seed physiology in bean (Phaseolus vulgaris L.). Biotechnology and Biotechnological Equipment, 2009, 23.sup1: 326-329. https://doi.org/10.1080/13102818.2009.10818430
Kochhar, S.L. Economic Botany in the Tropics, 3rd edn., MacMillian Publishers India Ltd, 2009: 145-147.
Lad, D.B., Bhagat, A.A., Gondhali, B.V. and Chauhan A. Stability analysis in French bean (Phaseolus vulgaris L.) genotypes during rabi season in Western Maharashtra. International Journal of Statistics and Applied Mathematics, 2024, SP-9 (1): 257-263.
Liu, C., Jiang, X. and Yuan, Z. Plant responses and adaptations to salt stress. A Review.Horticulturae, 2024, 10: 1221. https://doi.org/10.3390/horticulturae10111221
Mandal, A. K., Obi Reddy, G.P. and Ravisankar, T. Digital database of salt affected soils in India using geographic information system. Journal of Soil Salinity and Water Quality, 2011, 3 (1): 16-29.
Mena, E., Leiva-Mora, M., Edirisinghage K. D. J., Garcia, L., Veitia, N., Bermudez-Caraballoso, I. Ortiz, R.C.R.C., Effect of salt stress on seed germination and seedings growth of Phaseolus vulgaris L. CultivosTropicales, 2015, 36 (3): 71-74.
Muhammad, M., Waheed, A., Wahab, A., Majeed, M., Muhammad, N., Liu, Y. H., Li, L. and Li, W. J. Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 2024, 11: 100319. https://doi.org/10.1016/j.stress.2023.100319
Murashige, T. and Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 1962, 15: 473 - 497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Parida, A.K and Das, A.B. Salt tolerance and salinity effects on plants: A Review. Ecotoxicology and Environmental Safety, 2005, 60: 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
Rodriguez, l., Mendez, D., Montecino, h., Carrasco, B., Arevalo, B., Palomo, I. and Fuentes, E. Role of Phaseolus vulgaris L. in the prevention of cardiovascular diseases- cardioprotective potential of bioactive compounds. Plants, 2022, 11:186. https://doi.org/10.3390/plants11020186
Seth, R. and Kendurkar, S.V. In vitro screening: An effective method for evaluation of commercial genotypes of tomato towards salinity stress. International Journal of Current Microbiology and Applied Science, 2015, 4: 725-730.
Seth, R. In vitro evaluation of salt stress on seed germination, seedling growth and biochemical parameters in Chilli (Capsicum annuum L.). Annals of Plant Sciences.2024, 13 (6): 6390-6404. http://dx.doi.org/10.21746/aps.2024.13.6.3
Singh, V.K., Singh, G.R. and Dubey S.K. Effect of agronomic practices on growth, dry matter and yield of Rajmash (Phaseolus vulgaris L.). African Journal of Agricultural Research, 2014, 9 (51): 3711-3719. https://doi.org/10.5897/AJAR2014.9079
Taibi, K., Abderrahim, L.A., Boussaid, M., Bissoli, G., Taibi, F., Achir, M., Souana, K. and Mulet, J. M. Salt tolerance of Phaseolus vulgaris L. is a function of the potentiation extent of antioxidant enzymes and the expression profile of polyamine encoding genes. South African Journal of Biology, 2021, 140:114-122. https://doi.org/10.1016/j.sajb.2021.03.045
Taibi, K., Taibi, F., Abderrahim, L.A., Ennajah, A., Belkhodja, M. and Mulet, J.M. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. South African Journal of Botany, 2016, 105: 306-312. http://dx.doi.org/10.1016/j.sajb.2016.03.011
Tarchoun, N., Saadaoui, W., Mezghani, N., Pavli, O.I., Falleh, H. and Petropoulos, S.A. The effect of salt stress on germination, seedling growth and biochemical responses of tunisian squash (Cucurbita maxima Duchesne) germplasm. Plants, 2022, 11:800 https://doi.org/10.3390/plants11060800
Ucarli, C. Effect of salinity on seed germination and early seedling stage. In: Abiotic Stress in Plants. S. Fahad, S. Saud, Y.Chen, C.Wu and D.Wang, eds. Intech Open. 2021 http://dx.doi.org/10.5772/intechopen.93647
Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., Kamfwa, K., Snapp, S. S., and Bales, S. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security-A review. Legume Science, 2023, 5 (1). e155. https://doi.org/10.1002/leg3.155
Wang, W., Vinocur, B. and Altman, A. Plant responses to drought, salinity and extreme temperature: towards genetic engineering for stress tolerance. Planta, 2003, 218:1-14. https://doi.org/10.1007/s00425 003-1105-5![]() |
![]() |
![]() |
![]() |
![]() |