Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2023 - IJCMAS--ICV 2023: 95.56 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:10, October, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(10): 133-146
DOI: https://doi.org/10.20546/ijcmas.2024.1310.018


Nanomedicine-Driven Advances: Enhancing Checkpoint Inhibition and CAR-T Therapies in Cancer Immunotherapy
Institute of Teaching, Research, and Innovation, Liga Contra o Câncer, Natal, Brazil
*Corresponding author
Abstract:

Cancer immunotherapy has revolutionized oncological treatment, offering patients improved survival and quality of life. However, tumor heterogeneity, immune evasion, and treatment toxicity hinder its full potential. Nanomedicine provides innovative solutions to these challenges by enhancing immunotherapeutic strategies' efficacy, specificity, and safety. This review explores current advances in the application of nanomaterials in cancer immunotherapy, focusing on their role in personalized approaches, multifunctional therapeutic modalities, biocompatibility considerations, and enhancement of the enhanced permeability and retention (EPR) effect. Critical developments in bioinspired and stimuli-responsive nanotechnologies are discussed, emphasizing their ability to modulate the tumor microenvironment (TME), improve drug delivery, and facilitate combination therapies. The review also addresses translational challenges, regulatory considerations, and clinical advancements, highlighting examples from recent clinical trials and emerging technologies. Personalized nanomedicine enables the design of tailored therapeutic agents targeting tumors, reducing off-target effects and maximizing therapeutic efficacy. Multifunctional nanomaterials facilitate synergistic effects when combining photothermal, photodynamic, chemotherapeutic, and immunotherapeutic modalities. While promising, toxicity, biodegradability, and long-term safety issues necessitate standardized evaluation protocols for clinical translation. Advancements in stimuli-responsive nanomaterials and immune checkpoint inhibitors contribute to developing next-generation cancer immunotherapies with improved outcomes. This review provides a comprehensive overview of nanomedicine's current landscape, challenges, and future perspectives in cancer immunotherapy, advocating for further research to address the existing gaps and optimize clinical applications.


Keywords: Nanomedicine, immunotherapy, nanoparticles, tumor microenvironment, immune checkpoint inhibitors


References:

Afolabi LO, Adeshakin AO, Sani MM, Bi J, Wan X. Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology. 2019;158(2):63-69. https://doi.org/10.1111/imm.13094.

Ahmad W, Sajjad W, Zhou Q, Ge Z. Nanomedicine for combination of chemodynamic therapy and immunotherapy of cancers. Biomater Sci. 2024;12(18):4607-4629. https://doi.org/10.1039/d3bm02133e.

Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev. 2023;43(6):2115-2176. https://doi.org/10.1002/med.21971.

Azizian K, Pustokhina I, Ghanavati R, Hamblin MR, Amini A, Kouhsari E. The potential use of theranostic bacteria in cancer. J Cell Physiol. 2021;236(6):4184-4194. https://doi.org/10.1002/jcp.30152.

Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology. 2020;18(1):180. https://doi.org/10.1186/s12951-020-00741-z.

Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology. Cells. 2020;9(9):2102. https://doi.org/10.3390/cells9092102.

Boone CE, Wang L, Gautam A, Newton IG, Steinmetz NF. Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(1). https://doi.org/10.1002/wnan.1739.

Cabral H, Kinoh H, Kataoka K. Tumor-Targeted Nanomedicine for Immunotherapy. Acc Chem Res. 2020;53(12):2765-2776.

https://doi.org/10.1021/acs.accounts.0c00518.

Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater. 2023;12(26). https://doi.org/10.1002/adhm.202300882.

Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J HematolOncol. 2024;17(1):53. https://doi.org/10.1186/s13045-024-01574-1.

Cho H, Kim K. Multi-functional nanomedicines for combinational cancer immunotherapy that transform cold tumors to hot tumors. Expert Opin Drug Deliv. 2024;21(4):627-638. https://doi.org/10.1080/17425247.2024.2348656.

Choi JU, Park IK, Lee YK, Hwang SR. The Biological Function and Therapeutic Potential of Exosomes in Cancer: Exosomes as Efficient Nanocommunicators for Cancer Therapy. Int J Mol Sci. 2020;21(19):7363.

         https://doi.org/10.3390/ijms21197363.

Comparetti EJ, Ferreira NN, Ferreira LMB, Kaneno R, Zucolotto V. Immunomodulatory properties of nanostructured systems for cancer therapy. J Biomed Mater Res A. 2022;110(5):1166-1181. https://doi.org/10.1002/jbm.a.37359.

Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today. 2024;29(7):103981.

         https://doi.org/10.1016/j.drudis.2024.103981.

Dai Z, Wang L, Wang Z. Functional Immunostimulating DNA Materials: The Rising Stars for Cancer Immunotherapy. MacromolBiosci. 2021;21(6). https://doi.org/10.1002/mabi.202100083.

Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. Small. 2024;20(35).

         https://doi.org/10.1002/smll.202401631.

Dogheim GM, El Feel NE, Abd El-Maksod EA, Amer SS, El-Gizawy SA, Abd Elhamid AS, Elzoghby AO. Nanomedicines as enhancers of tumor immunogenicity to augment cancer immunotherapy. Drug Discov Today. 2024;29(3):103905. https://doi.org/10.1016/j.drudis.2024.103905.

ElzoghbyAO, Ferrone CR, Ferrone S, Nasr ML. Engineered nanomedicines to overcome resistance of pancreatic cancer to immunotherapy. Drug Discov Today. 2023;28(1):103434. https://doi.org/10.1016/j.drudis.2022.103434.

Fu Y, Bian X, Li P, Huang Y, Li C. Carrier-Free Nanomedicine for Cancer Immunotherapy. J Biomed Nanotechnol. 2022;18(4):939-956. https://doi.org/10.1166/jbn.2022.3315.

Fuchs N, Meta M, Schuppan D, Nuhn L, Schirmeister T. Novel Opportunities for Cathepsin S Inhibitors in Cancer Immunotherapy by Nanocarrier-Mediated Delivery. Cells. 2020;9(9):2021.

         https://doi.org/10.3390/cells9092021.

Gao J, Wang WQ, Pei Q, Lord MS, Yu HJ. Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacol Sin. 2020;41(7):986-994. https://doi.org/10.1038/s41401-020-0400-z.

Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS Nano. 2021;15(8):12567-12603. https://doi.org/10.1021/acsnano.1c02103.

García-Domínguez DJ, López-Enríquez S, Alba G, Garnacho C, Jiménez-Cortegana C, Flores-Campos R, de la Cruz-Merino L, Hajji N, Sánchez-Margalet V, Hontecillas-Prieto L. Cancer Nano-Immunotherapy: The Novel and Promising Weapon to Fight Cancer. Int J Mol Sci. 2024;25(2):1195. https://doi.org/10.3390/ijms25021195.

Gong N, Sheppard NC, Billingsley MM, June CH, Mitchell MJ. Nanomaterials for T-cell cancer immunotherapy. Nat Nanotechnol. 2021;16(1):25-36. https://doi.org/10.1038/s41565-020-00822-y.

Gowd V, Ahmad A, Tarique M, Suhail M, Zughaibi TA, Tabrez S, Khan R. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Semin Cancer Biol. 2022;86(Pt 2):624-644. https://doi.org/10.1016/j.semcancer.2022.03.026.

Guan M, Liu S, Yang YG, Song Y, Zhang Y, Sun T. Chemokine systems in oncology: From microenvironment modulation to nanocarrier innovations. Int J Biol Macromol. 2024;268(Pt 1):131679. https://doi.org/10.1016/j.ijbiomac.2024.131679.

Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol. 2021; 69:238-248. https://doi.org/10.1016/j.semcancer.2019.11.010.

Guo R, Liu Y, Xu N, Ling G, Zhang P. Multifunctional nanomedicines for synergistic photodynamic immunotherapy based on tumor immune microenvironment. Eur J Pharm Biopharm. 2022;173:103-120. https://doi.org/10.1016/j.ejpb.2022.03.002.

Guo S, Feng J, Li Z, Yang S, Qiu X, Xu Y, Shen Z. Improved cancer immunotherapy strategies by nanomedicine. Wiley Interdiscip Rev NanomedNanobiotechnol. 2023;15(3). https://doi.org/10.1002/wnan.1873.

Guo Y, Hu P, Shi J. Nanomedicine Remodels Tumor Microenvironment for Solid Tumor Immunotherapy. J Am Chem Soc. 2024;146(15):10217-10233. https://doi.org/10.1021/jacs.3c14005.

Gupta J, Safdari HA, Hoque M. Nanoparticle mediated cancer immunotherapy. Semin Cancer Biol. 2021; 69:307-324. https://doi.org/10.1016/j.semcancer.2020.03.015.

Han S, Huang K, Gu Z, Wu J. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. Nanoscale. 2020;12(2):413-436. https://doi.org/10.1039/c9nr08086d.

Han Y, Wen P, Li J, Kataoka K. Targeted nanomedicine in cisplatin-based cancer therapeutics. J Control Release. 2022; 345:709-720. https://doi.org/10.1016/j.jconrel.2022.03.049.

Hao J, Zhao X, Wang C, Cao X, Liu Y. Recent Advances in Nanoimmunotherapy by Modulating Tumor-Associated Macrophages for Cancer Therapy. Bioconjug Chem. 2024;35(7):867-882. https://doi.org/10.1021/acs.bioconjchem.4c00242

Huang X, Zhang W. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy. Small Methods. 2024;8(8).

         https://doi.org/10.1002/smtd.202301326.

Hussain Z, Rahim MA, Jan N, Shah H, Rawas-Qalaji M, Khan S, Sohail M, Thu HE, Ramli NA, Sarfraz RM, Abourehab MAS. Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release. 2021; 335:130-157. https://doi.org/10.1016/j.jconrel.2021.05.018.

Jasim SA, Farber IM, Noraldeen SAM, Bansal P, Alsaab HO, Abdullaev B, Alkhafaji AT, Alawadi AH, Hamzah HF, Mohammed BA. Incorporation of immunotherapies and nanomedicine to better normalize angiogenesis-based cancer treatment. Microvasc Res. 2024; 154:104691. https://doi.org/10.1016/j.mvr.2024.104691.

Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, Bi Y. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. Int J Nanomedicine. 2021; 16:1525-1551.

         https://doi.org/10.2147/IJN.S293427.

Jiang X, Wu L, Zhang M, Zhang T, Chen C, Wu Y, Yin C, Gao J. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery. J Control Release. 2023; 361:510-533. https://doi.org/10.1016/j.jconrel.2023.08.002.

Jiang Z, Fang Z, Hong D, Wang X. Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems. Int J Nanomedicine. 2024; 19:7383-7398. https://doi.org/10.2147/IJN.S467222.

Jiang Z, Zhang W, Zhang J, Liu T, Xing J, Zhang H, Tang D. Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy. Int J Nanomedicine. 2022; 17:4677-4696. https://doi.org/10.2147/IJN.S376216.

Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, Bao X, Fang W, Li H, Zhao P, Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials. 2024; 305:122463. https://doi.org/10.1016/j.biomaterials.2023.122463

Kaur S, Saini AK, Tuli HS, Garg N, Joshi H, Varol M, Kaur J, Chhillar AK, Saini RV. Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. NaunynSchmiedebergs Arch Pharmacol. 2024;397(3):1311-1326. https://doi.org/10.1007/s00210-023-02699-9.

Khan MM, Li Y, Zhou Z, Ni A, Saiding Q, Qin D, Tao W, Chen W. Macrophage-modulating nanomedicine for cancer immunotherapy. Nanoscale. 2024;16(15):7378-7386. https://doi.org/10.1039/d3nr06333j.

Kim J, Hong J, Lee J, FakhraeiLahiji S, Kim YH. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release. 2021; 332:109-126. https://doi.org/10.1016/j.jconrel.2021.02.002.

Ku KS, Tang J, Chen Y, Shi Y. Current Advancements in Anti-Cancer Chimeric Antigen Receptor T Cell Immunotherapy and How Nanotechnology May Change the Game. Int J Mol Sci. 2024;25(10):5361. https://doi.org/10.3390/ijms25105361.

Kyu Shim M, Yang S, Sun IC, Kim K. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer Immunotherapy: Preclinical evidence for safe and effective drug delivery. Adv Drug Deliv Rev. 2022; 183:114177.

         https://doi.org/10.1016/j.addr.2022.114177.

Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv. 2020;27(1):1248-1262. https://doi.org/10.1080/10717544.2020.1809559.

Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. Small. 2023;19(23). https://doi.org/10.1002/smll.202206211.

Li Q, Liu Y, Zhang Y, Jiang W. Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks. J Control Release. 2022; 347:183-198. https://doi.org/10.1016/j.jconrel.2022.05.003.

Li W, Peng A, Wu H, Quan Y, Li Y, Lu L, Cui M. Anti-Cancer Nanomedicines: A Revolution of Tumor Immunotherapy. Front Immunol. 2020; 11:601497. https://doi.org/10.3389/fimmu.2020.601497.

Li X, Guo X, Ling J, Tang Z, Huang G, He L, Chen T. Nanomedicine-based cancer immunotherapies developed by reprogramming tumor-associated macrophages. Nanoscale. 2021;13(9):4705-4727. https://doi.org/10.1039/d0nr08050k.

Li Y, Gao Y, Zhang X, Guo H, Gao H. Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy. Int J Pharm. 2020; 591:119986. https://doi.org/10.1016/j.ijpharm.2020.119986.

Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim DK, Kim K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics. 2019;9(25):7906-7923. https://doi.org/10.7150/thno.38425.

Liu J, Bai Y, Li Y, Li X, Luo K. Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective. EBioMedicine. 2024; 107:105301. https://doi.org/10.1016/j.ebiom.2024.105301.

Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Adv Mater. 2022;34(1). https://doi.org/10.1002/adma.202103790.

Liu Q, Zhang W, Jiao R, Lv Z, Lin X, Xiao Y, Zhang K. Rational Nanomedicine Design Enhances Clinically Physical Treatment-Inspired or Combined Immunotherapy. Adv Sci (Weinh). 2022;9(29). https://doi.org/10.1002/advs.202203921.

Lu L, Sun Y, Wan C, Hu Y, Lo PC, Lovell JF, Yang K, Jin H. Role of intravital imaging in nanomedicine-assisted anti-cancer therapy. Curr OpinBiotechnol. 2021; 69:153-161.

         https://doi.org/10.1016/j.copbio.2020.12.024.

Ma X, Li SJ, Liu Y, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev. 2022;51(12):5136-5174. https://doi.org/10.1039/d2cs00247g.

Ma Y, Shen Y, Zhu B, Li D, Liu J. Application of nanotechnology in circumventing immunotolerance. Pharmazie. 2020;75(10):470-477. https://doi.org/10.1691/ph.2020.0040.

Ma Y, Yi J, Ruan J, Ma J, Yang Q, Zhang K, Zhang M, Zeng G, Jin L, Huang X, Li J, Yang H, Wu W, Sun D. Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation. Adv Healthc Mater. 2024;13(20).

         https://doi.org/10.1002/adhm.202400514.

Martin JD, Cabral H, Stylianopoulos T, Jain RK. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol. 2020;17(4):251-266. https://doi.org/10.1038/s41571-019-0308-z.

Martin JD, Miyazaki T, Cabral H. Remodeling tumor microenvironment with nanomedicines. Wiley Interdiscip Rev NanomedNanobiotechnol. 2021;13(6). https://doi.org/10.1002/wnan.1730.

Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020;10(10):4557-4588. https://doi.org/10.7150/thno.38069.

Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Theranostics. 2019;9(25):7730-7748. https://doi.org/10.7150/thno.37306.

Ni H, Xue J, Wang F, Sun X, Niu M. Nanomedicine Approach to Immunotherapy of Hepatocellular Carcinoma. J Biomed Nanotechnol. 2021;17(5):771-792. https://doi.org/10.1166/jbn.2021.3055.

Pan X, Han T, Zhao Z, Wang X, Fang X. Emerging Nanotechnology in Preclinical Pancreatic Cancer Immunotherapy: Driving Towards Clinical Applications. Int J Nanomedicine. 2024; 19:6619-6641. https://doi.org/10.2147/IJN.S466459.

Pan X, Ni S, Hu K. Nanomedicines for reversing immunosuppressive microenvironment of hepatocellular carcinoma. Biomaterials. 2024; 306:122481. https://doi.org/10.1016/j.biomaterials.2024.122481

Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release. 2022;352:211-241.

         https://doi.org/10.1016/j.jconrel.2022.10.023.

Peng S, Xiao F, Chen M, Gao H. Tumor-Microenvironment-Responsive Nanomedicine for Enhanced Cancer Immunotherapy. Adv Sci (Weinh). 2022;9(1).

         https://doi.org/10.1002/advs.202103836.

Pi YN, Qi WC, Xia BR, Lou G, Jin WL. Long non-coding RNAs in the Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential. Front Immunol. 2021;12:697083. https://doi.org/10.3389/fimmu.2021.697083.

Pisani P, Airoldi M, Allais A, AluffiValletti P, Battista M, Benazzo M, Briatore R, Cacciola S, Cocuzza S, Colombo A, Conti B, Costanzo A, Della Vecchia L, Denaro N, Fantozzi C, Galizia D, Garzaro M, Genta I, Iasi GA, Krengli M, Landolfo V, Lanza GV, Magnano M, Mancuso M, Maroldi R, Masini L, Merlano MC, Piemonte M, Pisani S, Prina-Mello A, Prioglio L, Rugiu MG, Scasso F, Serra A, Valente G, Zannetti M, Zigliani A. Metastaticdisease in head&neckoncology. Acta Otorhinolaryngol Ital. 2020;40(SUPPL. 1).

         https://doi.org/10.14639/0392-100X-suppl.1-40-2020.

Raza F, Zafar H, Zhang S, Kamal Z, Su J, Yuan WE, Mingfeng Q. Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy. Adv Healthc Mater. 2021;10(6). https://doi.org/10.1002/adhm.202002081.

Ren SN, Zhang ZY, Guo RJ, Wang DR, Chen FF, Chen XB, Fang XD. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer. World J Gastroenterol. 2023;29(13):1911-1941. https://doi.org/10.3748/wjg. v29.i13.1911.

Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, Xu ZP, Yu H. From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Adv Mater. 2021;33(30). https://doi.org/10.1002/adma.202008094.

Santoni M, Massari F, Montironi R, Battelli N. Manipulating macrophage polarization in cancer patients: From nanoparticles to human chimeric antigen receptor macrophages. BiochimBiophys Acta Rev Cancer. 2021;1876(1):188547. https://doi.org/10.1016/j.bbcan.2021.188547.

Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(3). https://doi.org/10.1002/wnan.1870.

Shen F, Fang Y, Wu Y, Zhou M, Shen J, Fan X. Metal ions and nanometallic materials in antitumor immunity: Function, application, and perspective. J Nanobiotechnology. 2023;21(1):20.

         https://doi.org/10.1186/s12951-023-01771-z.

Silveira MJ, Castro F, Oliveira MJ, Sarmento B. Immunomodulatory nanomedicine for colorectal cancer treatment: a landscape to be explored? Biomater Sci. 2021;9(9):3228-3243. https://doi.org/10.1039/d1bm00137j.

Sofias AM, Combes F, Koschmieder S, Storm G, Lammers T. A paradigm shift in cancer nanomedicine: from traditional tumor targeting to leveraging the immune system. Drug Discov Today. 2021;26(6):1482-1489.

         https://doi.org/10.1016/j.drudis.2021.02.017.

Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin. 2020;41(7):970-985. https://doi.org/10.1038/s41401-020-0424-4.

Sun W, Xie S, Liu SF, Hu X, Xing D. Evolving Tumor Characteristics and Smart Nanodrugs for Tumor Immunotherapy. Int J Nanomedicine. 2024;19:3919-3942. https://doi.org/10.2147/IJN.S453265.

Thiruppathi J, Vijayan V, Park IK, Lee SE, Rhee JH. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Front Immunol. 2024; 15:1375767. https://doi.org/10.3389/fimmu.2024.1375767.

Vincent MP, Navidzadeh JO, Bobbala S, Scott EA. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell. 2022;40(3):255-276. https://doi.org/10.1016/j.ccell.2022.01.006.

Wang Y, Huang G, Hou Q, Pan H, Cai L. Cell surface-nanoengineering for cancer targeting immunoregulation and precise immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(4). https://doi.org/10.1002/wnan.1875.

Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules. 2024;25(8):4663-4676. https://doi.org/10.1021/acs.biomac.4c00706.

Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev. 2024;53(5):2643-2692. https://doi.org/10.1039/d3cs00673e.

Xie L, Li J, Wang L, Dai Y. Engineering metal-phenolic networks for enhancing cancer therapy by tumor microenvironment modulation. Wiley Interdiscip Rev NanomedNanobiotechnol. 2023;15(3). https://doi.org/10.1002/wnan.1864.

Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. Nanomedicine. 2019; 21:102034. https://doi.org/10.1016/j.nano.2019.102034.

Yang C, Li Y, Yang Y, Chen Z. Overview of Strategies to Improve Therapy against Tumors Using Natural Killer Cell. J Immunol Res. 2020; 2020:8459496. https://doi.org/10.1155/2020/8459496.

Yang EL, Sun ZJ. Nanomedicine Targeting Myeloid-Derived Suppressor Cells Enhances Anti-Tumor Immunity. AdvHealthc Mater. 2024;13(9). https://doi.org/10.1002/adhm.202303294.

Yang R, Chen L, Wang Y, Zhang L, Zheng X, Yang Y, Zhu Y. Tumor microenvironment responsive metal nanoparticles in cancer immunotherapy. Front Immunol. 2023; 14:1237361. https://doi.org/10.3389/fimmu.2023.1237361.

Yang T, Liu Z, Zhang T, Liu Y. Hybrid nano-stimulator for specific amplification of oxidative stress and precise tumour treatment. J Drug Target. 2024;32(7):756-769. https://doi.org/10.1080/1061186X.2024.2349112.

Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai K. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. Adv Sci (Weinh). 2023;10(2). https://doi.org/10.1002/advs.202204365.

Yang Y, Zhao T, Chen Q, Li Y, Xiao Z, Xiang Y, Wang B, Qiu Y, Tu S, Jiang Y, Nan Y, Huang Q, Ai K. Nanomedicine Strategies for Heating "Cold" Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC. Adv Sci (Weinh). 2022;9(28). https://doi.org/10.1002/advs.202202797.

Yang Z, Gao D, Zhao J, Yang G, Guo M, Wang Y, Ren X, Kim JS, Jin L, Tian Z, Zhang X. Thermal immuno-nanomedicine in cancer. Nat Rev Clin Oncol. 2023;20(2):116-134.

         https://doi.org/10.1038/s41571-022-00717-y.

Yin L, Li H, Shi L, Chen K, Pan H, Han W. Research advances in nanomedicine applied to the systemic treatment of colorectal cancer. Int J Cancer. 2023;152(5):807-821.

         https://doi.org/10.1002/ijc.34256.

Yin Z, Fan J, Xu J, Wu F, Li Y, Zhou M, Liao T, Duan L, Wang S, Geng W, Jin Y. Immunoregulatory Roles of Extracellular Vesicles and Associated Therapeutic Applications in Lung Cancer. Front Immunol. 2020; 11:2024. https://doi.org/10.3389/fimmu.2020.02024.

Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release. 2022; 343:564-583. https://doi.org/10.1016/j.jconrel.2022.01.047.

Yu S, Tong L, Shen J, Li C, Hu Y, Feng K, Shao J. Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. Eur J Med Chem. 2024; 269:116290. https://doi.org/10.1016/j.ejmech.2024.116290.

Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem. 2022;33(6):1011-1034. https://doi.org/10.1021/acs.bioconjchem.1c00437.

Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev. 2020;49(13):4234-4253. https://doi.org/10.1039/c9cs00773c.

Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Adv Sci (Weinh). 2022;9(5). https://doi.org/10.1002/advs.202103444.

Zhang P, Zhai Y, Cai Y, Zhao Y, Li Y. Nanomedicine-Based Immunotherapy for the Treatment of Cancer Metastasis. Adv Mater. 2019;31(49). https://doi.org/10.1002/adma.201904156.

Zhang Y, Chen X, Hu B, Zou B, Xu Y. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy. Nanomedicine (Lond). 2024;19(21-22):1821-1840. https://doi.org/10.1080/17435889.2024.2374230.

Zhang Y, Guoqiang L, Sun M, Lu X. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med. 2020;17(1):32-43. https://doi.org/10.20892/j.issn.2095-3941.2019.0372.

Zhao Y, Bilal M, Qindeel M, Khan MI, Dhama K, Iqbal HMN. Nanotechnology-based immunotherapies to combat cancer metastasis. Mol Biol Rep. 2021;48(9):6563-6580. https://doi.org/10.1007/s11033-021-06660-y.

Zhao Y, Zhang X, An M, Zhang J, Liu Y. Recent advancements in nanomedicine based lipid metabolism for tumour immunotherapy. J Drug Target. 2023;31(10):1050-1064.

         https://doi.org/10.1080/1061186X.2023.2283829

Zhao YD, Muhetaerjiang M, An HW, Fang X, Zhao Y, Wang H. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials. 2021; 268:120552. https://doi.org/10.1016/j.biomaterials.2020.120552

Zhong Z, Deng W, Wu J, Shang H, Tong Y, He Y, Huang Q, Ba X, Chen Z, Tang K. Cell membrane coated nanoparticles as a biomimetic drug delivery platform for enhancing cancer immunotherapy. Nanoscale. 2024;16(18):8708-8738. https://doi.org/10.1039/d4nr00284a.

Zhu D, Zhu XH, Ren SZ, Lu YD, Zhu HL. Manganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics. J Drug Target. 2021;29(9):911-924. https://doi.org/10.1080/1061186X.2020.1815209.


Download this article as Download

How to cite this article:

Amália Cinthia Meneses do Rêgo and Irami Araújo-Filho. 2024. Nanomedicine-Driven Advances: Enhancing Checkpoint Inhibition and CAR-T Therapies in Cancer Immunotherapy.Int.J.Curr.Microbiol.App.Sci. 13(10): 133-146. doi: https://doi.org/10.20546/ijcmas.2024.1310.018
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations