![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
This review article highlights the industrial relevance of extremophile proteases and examines methods for isolating and characterizing them. Microorganisms known as extremophiles, which flourish in harsh conditions, have special enzymatic properties that may have important biotechnological uses. The methodical procedure includes gathering samples from extreme environments, isolating extremophiles, enrichment culture, and screening for protease activity. In order to predict the structure and function of proteins, promising strains go through gene sequencing, PCR amplification, genomic DNA extraction, and bioinformatics analysis. Together with protein extraction, purification, and characterization, the methodology described also makes use of biochemical assays to ascertain the enzymatic properties of proteins and methods such as SDS-PAGE. Stability, activity in harsh environments, and compatibility with industrial processes are all taken into account when evaluating industrial potential. Based on their strong and distinct characteristics, proteases derived from extremophiles are promising candidates for a range of industrial uses, according to the review. The systematic approach highlights the potential of proteases derived from extremophiles in the processing of leather and offers researchers a path forward. Because these enzymes can survive in harsh environments, there are potential for them to change and enhance sustainability in the leather sector. The study makes the case that more research into extremophile-derived proteases could lead to novel biotechnological approaches to leather processing as well as sustainable industrial practices.
Akal, A. L., Karan, R., Hohl, A., Alam, I., Vogler, M., Grötzinger, S. W., et al., (2018). A Polyextremophilic Alcohol Dehydrogenase from the Atlantis II Deep Red Sea Brine Pool. FEBS Open Bio 9 (2), 194–205. https://doi.org/10.1002/2211-5463.12557
Al-Ghanayem, A. A., and Joseph, B. (2020). Current Prospective in Using Cold-Active Enzymes as Eco-Friendly Detergent Additive. Appl. Microbiol. Biotechnol. 104 (7), 2871–2882. https://doi.org/10.1007/s00253-020-10429-x
Alvira, P., Tomás-Pejó, E., Ballesteros, M., and Negro, M. J. (2010). Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis A Review. Bioresour. Techn. 101, 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
Amoozegar, M. A., Safarpour, A., Noghabi, K. A., Bakhtiary, T., and Ventosa, A. (2019). Halophiles and Their Vast Potential in Biofuel Production. Front. Microbiol. 10, 1895. https://doi.org/10.3389/fmicb.2019.01895
Appukuttan, D., Rao, A. S., and Apte, S. K. (2006). Engineering of Deinococcus Radiodurans R1 for Bioprecipitation of Uranium from Dilute Nuclear Waste. Appl. Environ. Microbiol. 72 (12), 7873–7878. https://doi.org/10.1128/aem.01362-06
Arora, N. K., and Panosyan, H. (2019). Extremophiles Applications and Roles in Environmental Sustainability. Environ. Sustainability 2 (3), 217–218. https://doi.org/10.1007/s42398-019-00082-0
Atalah, J., Cáceres-Moreno, P., Espina, G., and Blamey, J. M. (2019). Thermophiles and the Applications of Their Enzymes as New Biocatalysts. Bioresour. Techn. 280, 478–488. https://doi.org/10.1016/j.biortech.2019.02.008
Bala, A., and Singh, B. (2019). Cellulolytic and Xylanolytic Enzymes of Thermophiles for the Production of Renewable Biofuels. Renew. Energ. 136, 1231–1244. https://doi.org/10.1016/j.renene.2018.09.100
Barroca, M., Santos, G., Gerday, C., and Collins, T. (2017). “Biotechnological Aspects of Cold-Active Enzymes,” in Psychrophiles From Biodiversity to Biotechnology. Editor R. Margesin (Cham Springer International Publishing), 461–475. https://doi.org/10.1007/978-3-319-57057-0_19
Beaufils, C.; Man, H.-M.; de Poulpiquet, A.; Mazurenko, I.; Lojou, E. From Enzyme Stability to Enzymatic Bioelectrode Stabilization Processes. Catalysts 2021, 11, 497. https//doi.org/10.3390/catal11040497
Beckham, G. T., Resch, M. G., Donohoe, B. S., Baker, J. O., Decker, S. R., Bayer, E. A., et al., (2013). Fungal Cellulases and Complexed Cellulosomal Enzymes Exhibit Synergistic Mechanisms in Cellulose Deconstruction. Energy Environ. Sci. 6 (6), 1858. https://doi.org/10.1039/c3ee00019b
Benešová, E., Marková, M., and Králová, B. (2005). α-Glucosidase and β-Glucosidase from Psychrotrophic Strain Arthrobacter Sp. C2-2. Czech J. Food Sci. 23, 116–120. https://doi.org/10.17221/3380-CJFS
Berenguer-Murcia, Á., Ortiz, C., Ferreira, M. L., Barbosa, O., Dos Santos, J. C. S., Rodrigues, R. C., et al., (2019). Novozym 435 the "perfect" Lipase Immobilized Biocatalyst? Catal. Sci. Technol. 9 (10), 2380–2420. https://doi.org/10.1039/c9cy00415g
Berg, K., Leiros, I., and Williamson, A. (2019). Temperature Adaptation of DNA Ligases from Psychrophilic Organisms. Extremophiles 23 (3), 305–317. https://doi.org/10.1007/s00792-019-01082-y
Bertoldo, C., Dock, C., and Antranikian, G. (2004). Thermoacidophilic Microorganisms and Their Novel Biocatalysts. Eng. Life Sci. 4 (6), 521–532. https://doi.org/10.1002/elsc.200402155
Bhalla, A., Bansal, N., Kumar, S., Bischoff, K. M., and Sani, R. K. (2013). Improved Lignocellulose Conversion to Biofuels with Thermophilic Bacteria and Thermostable Enzymes. Bioresour. Techn. 128, 751–759. https://doi.org/10.1016/j.biortech.2012.10.145
Bhardwaj, N., Kumar, B., and Verma, P. (2019). A Detailed Overview of Xylanases an Emerging Biomolecule for Current and Future Prospective. Bioresour. Bioproc. 6 (1), 40. https://doi.org/10.1186/s40643-019-0276-2
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire M G. (2024) Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev.;124(6)3037-3084. https://doi.org/10.1021/acs.chemrev.3c00551. Epub
Brim, H., Venkateswaran, A., Kostandarithes, H. M., Fredrickson, J. K., and Daly, M. J. (2003). Engineering Deinococcus Geothermalis for Bioremediation of High-Temperature Radioactive Waste Environments. Appl. Environ. Microbiol. 69 (8), 4575–4582. https://doi.org/10.1128/aem.69.8.4575-4582.2003
Brininger, C., Spradlin, S., Cobani, L., and Evilia, C. (2018). The More Adaptive to Change, the More Likely You Are to Survive Protein Adaptation in Extremophiles. Semin. Cel Develop. Biol. 84, 158–169. https://doi.org/10.1016/j.semcdb.2017.12.016
Cárdenas-Fernández, M., Sinclair, O., and Ward, J. M. (2021). Novel Transaminases from Thermophiles from Discovery to Application. Microb. Biotechnol. 15 (1), 305–317. https://doi.org/10.1111/1751-7915.13940
Chen, L.-X., Huang, L.-N., Méndez-García, C., Kuang, J.-L., Hua, Z.-S., Liu, J., et al., (2016). Microbial Communities, Processes and Functions in Acid Mine Drainage Ecosystems. Curr. Opin. Biotechnol. 38, 150–158. https://doi.org/10.1016/j.copbio.2016.01.013
Chien, A., Edgar, D. B., and Trela, J. M. (1976). Deoxyribonucleic Acid Polymerase from the Extreme Thermophile Thermus aquaticus. J. Bacteriol. 127 (3), 1550–1557. https://doi.org/10.1128/jb.127.3.1550-1557.1976
Choi, Y. J., Hur, J. M., Lim, S., Jo, M., Kim, D. H., and Choi, J. I. (2014). Induction of Apoptosis by Deinoxanthin in Human Cancer Cells. Anticancer Res. 34 (4), 1829–1835.
de la Fuente, M., Lombardero, L., Gómez-González, A., Solari, C., Angulo-Barturen, I., Acera, A.,...& Barreda-Gómez, G. (2021). Enzyme therapy current challenges and future perspectives. International Journal of Molecular Sciences, 22(17), 9181.
Delgado-García, M., Rodríguez, J. A., Mateos-Díaz, J. C., Aguilar, C. N., Rodríguez-Herrera, R., and Camacho-Ruíz, R. M. (2018). in Enzymes in Food Technology Improvements and Innovations. Editor M. Kuddus (Singapore Springer Singapore), 243–262.
Desai, A. A. (2011). Sitagliptin Manufacture a Compelling Tale of green Chemistry, Process Intensification, and Industrial Asymmetric Catalysis. Angew. Chem. Int. Ed. 50 (9), 1974–1976. https://doi.org/10.1002/anie.201007051
Distaso, M. A. (2019). Metagenomics approaches to discover new industrially-relevant enzymes. Bangor University (United Kingdom).
Dornez, E., Verjans, P., Arnaut, F., Delcour, J. A., and Courtin, C. M. (2011). Use of Psychrophilic Xylanases Provides Insight into the Xylanase Functionality in Bread Making. J. Agric. Food Chem. 59 (17), 9553–9562. https://doi.org/10.1021/jf201752g
Elend, C., Schmeisser, C., Hoebenreich, H., Steele, H. L., and Streit, W. R. (2007). Isolation and Characterization of a Metagenome-Derived and Cold-Active Lipase with High Stereospecificity for (R)-ibuprofen Esters. J. Biotechnol. 130 (4), 370–377. https://doi.org/10.1016/j.jbiotec.2007.05.015
Eppinger, J., Karan, R., Mathew, S., Muhammad, R., Bautista, D. B., Vogler, M., et al., (2020). Understanding High-Salt and Cold Adaptation of a Polyextremophilic Enzyme. Microorganisms 8 (10), 1594. https://doi.org/10.3390/microorganisms8101594
Espina, G., Atalah, J., and Blamey, J. M. (2021). Extremophilic Oxidoreductases for the Industry Five Successful Examples with Promising Projections. Front. Bioeng. Biotechnol. 9 (654), 710035. https://doi.org/10.3389/fbioe.2021.710035
Ferguson, S. J., and Ingledew, W. J. (2008). Energetic Problems Faced by Micro-organisms Growing or Surviving on Parsimonious Energy Sources and at Acidic pH I. Acidithiobacillus Ferrooxidans as a Paradigm. Biochim. Biophys. Acta (Bba) - Bioenerg. 1777 (12), 1471–1479. https://doi.org/10.1016/j.bbabio.2008.08.012
Fornbacke, M., and Clarsund, M. (2013). Cold-adapted Proteases as an Emerging Class of Therapeutics. Infect. Dis. Ther. 2 (1), 15–26. https://doi.org/10.1007/s40121-013-0002-x
Fujinami, S., and Fujisawa, M. (2010). Industrial Applications of Alkaliphiles and Their Enzymes-Ppast, Present and Future. Environ. Technol. 31 (8-9), 845–856. https://doi.org/10.1080/09593331003762807
Furhan, J. Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs recent overview. J Genet Eng Biotechnol 18, 36 (2020). https://doi.org/10.1186/s43141-020-00053-7
Gallo, G., Puopolo, R., Carbonaro, M., Maresca, E., and Fiorentino, G. (2021). Extremophiles, a Nifty Tool to Face Environmental Pollution From Exploitation of Metabolism to Genome Engineering. Int. J. Environ. Res. Public Health 18 (10), 5228. https://doi.org/10.3390/ijerph18105228
Genolette, S. W., Karan, R., Strillinger, E., Bader, S., Frank, A., Al Rowaihi, I. S., et al., (2000). Identification and Experimental Characterization of an Extremophilic Brine Pool Alcohol Dehydrogenase from Single Amplified Genomes. ACS Chem. Biol. 13 (1), 161–170. https://doi.org/10.1021/acschembio.7b00792
Grötzinger, S. W., Vogler, M., Karan, R., Renn, D., Vancea, A., Vielberg, M. T., et al., (2020). Crystal Structure and Active Site Engineering of a Halophilic γ-Carbonic Anhydrase. Front. Microbiol. 11, 742. https://doi.org/10.3389/fmicb.2020.00742
Gupta, G. K., Kapoor, R. K., and Shukla, P. (2020). “Advanced Techniques for Enzymatic and Chemical Bleaching for Pulp and Paper Industries,” in Microbial Enzymes and Biotechniques Interdisciplinary Perspectives. Editor P. Shukla (Singapore Springer Singapore), 43–56. https://doi.org/10.1007/978-981-15-6895-4_3
Haque, R. U., Paradisi, F., and Allers, T. (2020). Haloferax Volcanii for Biotechnology Applications Challenges, Current State and Perspectives. Appl. Microbiol. Biotechnol. 104, 1371–1382. https://doi.org/10.1007/s00253-019-10314-2
Hasan, F., Shah, A. A., and Hameed, A. (2006). Industrial Applications of Microbial Lipases. Enzyme Microb. Techn. 39 (2), 235–251. https://doi.org/10.1016/j.enzmictec.2005.10.016
He, H., Chen, X., Li, J., Zhang, Y., and Gao, P. (2004). Taste Improvement of Refrigerated Meat Treated with Cold-Adapted Protease. Food Chem. 84 (2), 307–311. https://doi.org/10.1016/s0308-8146(03)00242-5
Holwerda, E. K., Worthen, R. S., Kothari, N., Lasky, R. C., Davison, B. H., Fu, C., et al., (2019). Multiple Levers for Overcoming the Recalcitrance of Lignocellulosic Biomass. Biotechnol. Biofuels 12 (1), 15. https://doi.org/10.1186/s13068-019-1353-7
Homaei A A, Sariri R, Vianello F, Stevanato R. (2013) Enzyme immobilization an update. 29;6(4)185-205. https://doi.org/10.1007/s12154-013-0102-9. PMID 24432134; PMCID PMC3787205.
Hübscher, U., Georlette, D., Jónsson, Z. O., Van Petegem, F., Chessa, J.-P., Van Beeumen, J., et al., (2000). A DNA Ligase from the Psychrophile Pseudoalteromonas Haloplanktis Gives Insights into the Adaptation of Proteins to Low Temperatures. Eur. J. Biochem. 267, 3502–3512. https://doi.org/10.1046/j.1432-1327.2000.01377.x
Huston, A. L. (2008). “Biotechnological Aspects of Cold-Adapted Enzymes,” in Psychrophiles From Biodiversity to Biotechnology. Editors R. Margesin, F. Schinner, J.-C. Marx, and C. Gerday (Berlin, Heidelberg Springer Berlin Heidelberg), 347–363. https://doi.org/10.1007/978-3-540-74335-4_20
Izadi, P., Fontmorin, J-M., Fernández, L. F. L., Cheng, S., Head, I., and Yu, E. H. (2019). High Performing Gas Diffusion Biocathode for Microbial Fuel Cells Using Acidophilic Iron Oxidizing Bacteria. Front. Energ. Res. 7, 93. https://doi.org/10.3389/fenrg.2019.00093
Izquierdo, J. A., Pattathil, S., Guseva, A., Hahn, M. G., and Lynd, L. R. (2014). Comparative Analysis of the Ability of Clostridium Clariflavum Strains and Clostridium Thermocellumto Utilize Hemicellulose and Unpretreated Plant Material. Biotechnol. Biofuels 7 (1), 136. https://doi.org/10.1186/s13068-014-0136-4
Jadhav, G. S., and Ghangrekar, M. M. (2009). Performance of Microbial Fuel Cell Subjected to Variation in pH, Temperature, External Load and Substrate Concentration. Bioresour. Techn. 100 (2), 717–723. https://doi.org/10.1016/j.biortech.2008.07.041
Jin, Z., Li, X., Ji, H., Zhai, Y., and Bai, Y., (2021). Characterizing a Thermostable Amylopullulanase from Caldisericum Exile with Wide pH Adaptation and Broad Substrate Specificity. Food Biosci. 41, 100952. https://doi.org/10.1016/j.fbio.2021.100952
Jitendra Malviya. 2021. Potential of Protease from Bacillus species for Biomedical and Industrial Applications.Int.J.Curr.Microbiol.App.Sci. 10(5) 560-574.
Johnson, D. B., and Hallberg, K. B. (2005). Acid Mine Drainage Remediation Options a Review. Sci. Total Environ. 338 (1), 3–14. https://doi.org/10.1016/j.scitotenv.2004.09.002
Jorquera, M. A., Graether, S. P., and Maruyama, F. (2019). Editorial Bioprospecting and Biotechnology of Extremophiles. Front. Bioeng. Biotechnol. 7, 204. https://doi.org/10.3389/fbioe.2019.00204
Kanafusa-Shinkai, S., Wakayama, J. i., Tsukamoto, K., Hayashi, N., Miyazaki, Y., Ohmori, H., et al., (2013). Degradation of Microcrystalline Cellulose and Non-pretreated Plant Biomass by a Cell-free Extracellular Cellulase/hemicellulase System from the Extreme Thermophilic Bacterium Caldicellulosiruptor Bescii. J. Biosci. Bioeng. 115 (1), 64–70. https://doi.org/10.1016/j.jbiosc.2012.07.019
Karan, R., Capes, M. D., Dassarma, P., and Dassarma, S. (2013). Cloning, Overexpression, Purification, and Characterization of a Polyextremophilic β-galactosidase from the Antarctic Haloarchaeon Halorubrum Lacusprofundi. BMC Biotechnol. 13, 3. https://doi.org/10.1186/1472-6750-13-3
Karshikoff, A., Nilsson, L., and Ladenstein, R. (2015). Rigidity versus Flexibility the Dilemma of Understanding Protein thermal Stability. Febs J. 282 (20), 3899–3917. https://doi.org/10.1111/febs.13343
Kasirajan, L., and Maupin?Furlow, J. A. (2021). Halophilic Archaea and Their Potential to Generate Renewable Fuels and Chemicals. Biotechnol. Bioeng. 118 (3), 1066–1090. https://doi.org/10.1002/bit.27639
Katsimpouras, C., and Stephanopoulos, G. (2021). Enzymes in Biotechnology Critical Platform Technologies for Bioprocess Development. Curr. Opin. Biotechnol. 69, 91–102. https://doi.org/10.1016/j.copbio.2020.12.003
Kim, T. D., Le, L. T. H. L., Yoo, W., Jeon, S., Lee, C., Kim, K. K., Lee, J. H., (2020). Biodiesel and flavor compound production using a novel promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from the psychrophilic bacterium Halocynthiibacter arcticus. Biotechnology for biofuels, 13, 55. https://doi.org/10.1186/s13068-020-01696-x
Kirk, O., and Christensen, M. W. (2002). Lipases from Candida antarctica Unique Biocatalysts from a Unique Origin. Org. Process. Res. Dev. 6 (4), 446–451. https://doi.org/10.1021/op0200165
Knapic, L. (2012). Computational methods for rational screening and engineering of enzyme properties (Doctoral dissertation, Università degli studi di Trieste).
Kumar, A., Mukhia, S., and Kumar, R. (2021). Industrial Applications of Cold-Adapted Enzymes Challenges, Innovations and Future Perspective. 3 Biotech. 11 (10), 426. https://doi.org/10.1007/s13205-021-02929-y
Landeta, C., Boyd, D., and Beckwith, J. (2018). Disulfide Bond Formation in Prokaryotes. Nat. Microbiol. 3 (3), 270–280. https://doi.org/10.1038/s41564-017-0106-2
Leiva, E., Leiva-Aravena, E., Rodríguez, C., Serrano, J., and Vargas, I. (2018). Arsenic Removal Mediated by Acidic pH Neutralization and Iron Precipitation in Microbial Fuel Cells. Sci. Total Environ. 645, 471–481. https://doi.org/10.1016/j.scitotenv.2018.06.378
Li, X., Han, H., Ling, Z., Khan, A., Virk, A. K., Kulshrestha, S., (2019). Improvements of Thermophilic Enzymes From Genetic Modifications to Applications. Bioresour. Techn. 279, 350–361. https://doi.org/10.1016/j.biortech.2019.01.087
Li, Z., Liu, W., Gu, Z., Li, C., Hong, Y., and Cheng, L. (2015). The Effect of Starch Concentration on the Gelatinization and Liquefaction of Corn Starch. Food Hydrocolloids 48, 189–196. https://doi.org/10.1016/j.foodhyd.2015.02.030
Littlechild, J. A. (2015). Enzymes from Extreme Environments and Their Industrial Applications. Front. Bioeng. Biotechnol. 3, 161. https://doi.org/10.3389/fbioe.2015.00161
Liu, T., Wang, Y., Luo, X., Li, J., Reed, S. A., Xiao, H., et al., (2016). Enhancing Protein Stability with Extended Disulfide Bonds. Proc. Natl. Acad. Sci. U.S.A. 113 (21), 5910–5915. https://doi.org/10.1073/pnas.1605363113
Liu, Y., Luo, G., Ngo, H. H., Guo, W., and Zhang, S. (2020). Advances in Thermostable Laccase and its Current Application in Lignin-First Biorefinery A Review. Bioresour. Techn. 298, 122511. https://doi.org/10.1016/j.biortech.2019.122511
Liu, Z., Ning, C., Yuan, M., Yang, S., Wei, X., Xiao, M., et al., (2020). High-level Expression of a Thermophilic and Acidophilic β-mannanase from Aspergillus Kawachii IFO 4308 with Significant Potential in Mannooligosaccharide Preparation. Bioresour. Techn. 295, 122257. https://doi.org/10.1016/j.biortech.2019.122257
Lopez-Lopez, O., Cerdan, M. E., and Siso, M. I. (2014). New Extremophilic Lipases and Esterases from Metagenomics. Curr. Protein Pept. Sci. 15 (5), 445–455. https://doi.org/10.2174/1389203715666140228153801
Lozano, P., Bernal, J. M., Nieto, S., Gomez, C., Garcia-Verdugo, E., and Luis, S. V. (2015). Active Biopolymers in green Non-conventional media a Sustainable Tool for Developing Clean Chemical Processes. Chem. Commun. 51, 17361–17374. https://doi.org/10.1039/c5cc07600e
Lynd, L. R., Weimer, P. J., Van Zyl, W. H., and Pretorius, I. S. (2002). Microbial Cellulose Utilization Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577. https://doi.org/10.1128/mmbr.66.3.506-577.2002
Mallick, P., Boutz, D. R., Eisenberg, D., and Yeates, T. O. (2002). Genomic Evidence that the Intracellular Proteins of Archaeal Microbes Contain Disulfide Bonds. Proc. Natl. Acad. Sci. U.S.A. 99 (15), 9679–9684. https://doi.org/10.1073/pnas.142310499
Mangiagalli and Lotti, M. (2021). Cold-Active β-Galactosidases Insight into Cold Adaptation Mechanisms and Biotechnological Exploitation. Mar. Drugs 19 (1), 43. https://doi.org/10.3390/md19010043
Mangiagalli M., Brocca, S., Orlando, M., and Lotti, M. (2020). The "cold Revolution". Present and Future Applications of Cold-Active Enzymes and Ice-Binding Proteins. New Biotechnol. 55, 5–11. https://doi.org/10.1016/j.nbt.2019.09.003
Marhuenda-Egea, F. C., and Bonete, M. J. (2002). Extreme Halophilic Enzymes in Organic Solvents. Curr. Opin. Biotechnol. 13 (4), 385–389. https://doi.org/10.1016/s0958-1669(02)00338-5
Martínez-Espinosa, R. M. (2020). Heterologous and Homologous Expression of Proteins from Haloarchaea Denitrification as Case of Study. Int. J. Mol. Sci. 21 (1), 82. https://doi.org/10.3390/ijms21010082
Mathur, E. J., Lundberg, K. S., Shoemaker, D. D., Adams, M. W. W., Short, J. M. and Sorge, J. A., (1991). High-fidelity Amplification Using a Thermostable DNA Polymerase Isolated from Pyrococcus Furiosus. Gene 108 (1), 1–6. https://doi.org/10.1016/0378-1119(91)90480-y
Mekkes, J. R., Le Poole, I. C., Das, P. K., Bos, J. D., and Westerhof, W. (1998). Efficient Debridement of Necrotic Wounds Using Proteolytic Enzymes Derived from Antarctic Krill a Double-Blind, Placebo-Controlled Study in a Standardized Animal Wound Model. Wound Repair Regen. 6, 50–57. https://doi.org/10.1046/j.1524-475x.1998.60108.x
Memarpoor-Yazdi, M., Karbalaei-Heidari, H. R., and Khajeh, K. (2017). Production of the Renewable Extremophile Lipase Valuable Biocatalyst with Potential Usage in Food Industry. Food Bioproducts Process. 102, 153–166. https://doi.org/10.1016/j.fbp.2016.12.015
Mesbah, N. M. (2019). Covalent Immobilization of a Halophilic, Alkalithermostable Lipase LipR2 on Florisil Nanoparticles for Production of Alkyl Levulinates. Arch. Biochem. Biophys. 667, 22–29. https://doi.org/10.1016/j.abb.2019.04.004
Mesbah, N. M., and Wiegel, J. (2017). A Halophilic, Alkalithermostable, Ionic Liquid-Tolerant Cellulase and its Application in In Situ Saccharification of Rice Straw. Bioenerg. Res. 10 (2), 583–591. https://doi.org/10.1007/s12155-017-9825-8
Mhetras, N., Mapare, V., and Gokhale, D. (2021). Cold Active Lipases Biocatalytic Tools for Greener Technology. Appl. Biochem. Biotechnol. 193 (7), 2245–2266. https://doi.org/10.1007/s12010-021-03516-w
Mokashe, N., Chaudhari, B., and Patil, U. (2018). Operative Utility of Salt-Stable Proteases of Halophilic and Halotolerant Bacteria in the Biotechnology Sector. Int. J. Biol. Macromolecules 117, 493–522. https://doi.org/10.1016/j.ijbiomac.2018.05.217
Motamedi, 2021. “The Principles of Bioprocess Technology,” in Bioprocess Technology Kinetics and Reactors. Editor A. Moser (New York, NY Springer New York), 13–65. https://doi.org/10.1007/978-1-4613-8748-0_2
Movahedi, A. A., Motamedi, E., Sadeghian Motahar, S. F., Maleki, M., Kavousi, K., Ariaeenejad, S., Moosavi- et al., (2021). Upgrading the Enzymatic Hydrolysis of Lignocellulosic Biomass by Immobilization of Metagenome-Derived Novel Halotolerant Cellulase on the Carboxymethyl Cellulose-Based Hydrogel. Cellulose 28 (6), 3485–3503. https://doi.org/10.1007/s10570-021-03727-8
Mutlu-Ingok, A., Kahveci, D., Karbancioglu-Guler, F., and Ozcelik, B. (2022). “Applications of Extremozymes in the Food Industry,” in Microbial Extremozymes. Editor M. Kuddus (London, Cambridge, San diego, Oxford Academic Press), 197–206. https://doi.org/10.1016/b978-0-12-822945-3.00012-9
Oren, A. (2013). Life at High Salt Concentrations, Intracellular KCl Concentrations, and Acidic Proteomes. Front. Microbiol. 4, 315. https://doi.org/10.3389/fmicb.2013.00315
Parashar, D., and Satyanarayana, T. (2018). An Insight into Ameliorating Production, Catalytic Efficiency, Thermostability and Starch Saccharification of Acid-Stable α-Amylases from Acidophiles. Front. Bioeng. Biotechnol. 6, 125. https://doi.org/10.3389/fbioe.2018.00125
Patel, S., and Saraf, M. (2015). “Perspectives and Application of Halophilic Enzymes,” in Halophiles Biodiversity and Sustainable Exploitation. Editors D. K. Maheshwari, and M. Saraf (Cham Springer International Publishing), 403–419. https://doi.org/10.1007/978-3-319-14595-2_15
Petri, R., & Schmidt-Dannert, C. (2004). Dealing with complexity evolutionary engineering and genome shuffling. Current opinion in biotechnology, 15(4), 298-304.
Piroozmand, F., Barati, F., Hosseini, F., Vafaee, R., Sabouri, Z., Arab, S. S., Shadfar, N., (2024). In-silico approaches to investigate enzyme immobilization a comprehensive systematic review. Physical Chemistry Chemical Physics.
Puri, M., Singh, N., Mathur, A. S., Gupta, R. P., Barrow, C. J. and Tuli, D. K., (2021). Enzyme Systems of Thermophilic Anaerobic Bacteria for Lignocellulosic Biomass Conversion. Int. J. Biol. Macromolecules 168, 572–590. https://doi.org/10.1016/j.ijbiomac.2020.12.004
Qiu, J., Han, R., and Wang, C. (2021). Microbial Halophilic Lipases A Review. J. Basic Microbiol. 61 (7), 594–602. https://doi.org/10.1002/jobm.202100107
Raddadi, N., Cherif, A., Daffonchio, D., Neifar, M., and Fava, F. (2015). Biotechnological Applications of Extremophiles, Extremozymes and Extremolytes. Appl. Microbiol. Biotechnol. 99 (19), 7907–7913. https://doi.org/10.1007/s00253-015-6874-9
Renganathan, P., Dumorné, K., Córdova, D. C., and Astorga-Eló, M., (2017). Extremozymes A Potential Source for Industrial Applications. J. Microbiol. Biotechnol. 27 (4), 649–659. https://doi.org/10.4014/jmb.1611.11006
Resch B (2013). BCC Research Report. Global Markets for Enymes in Industrial Applications. USA BCC Research LLC. Bio030L.
Research E M (2021). Global Detergent Grade Enzymes Market Report and Forecast 2021-2026. USA Expert Market Research.
Reshmy, R., Madhavan, A., Arun, K. B., Binod, P., Sirohi, R., Tarafdar, A., et al., (2021). Design of Novel Enzyme Biocatalysts for Industrial Bioprocess Harnessing the Power of Protein Engineering, High Throughput Screening and Synthetic Biology. Bioresour. Techn. 325, 124617. https://doi.org/10.1016/j.biortech.2020.124617
Rodrigues, C., Núñez-Gómez, D., Silveira, D. D., Lapolli, F. R., and Lobo-Recio, M. A. (2019). Chitin as a Substrate for the Biostimulation of Sulfate-Reducing Bacteria in the Treatment of Mine-Impacted Water (MIW). J. Hazard. Mater. 375, 330–338. https://doi.org/10.1016/j.jhazmat.2019.02.086
Salihu, A., and Alam, M. Z. (2015). Solvent Tolerant Lipases A Review. Process Biochem. 50 (1), 86–96. https://doi.org/10.1016/j.procbio.2014.10.019
Santiago, M., Ramírez-Sarmiento, C. A., Zamora, R. A., and Parra, L. P. (2016). Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front. Microbiol. 7, 1408. https://doi.org/10.3389/fmicb.2016.01408
Sarmiento, F., Peralta, R., and Blamey, J. M. (2015). Cold and Hot Extremozymes Industrial Relevance and Current Trends. Front. Bioeng. Biotechnol. 3, 148. https://doi.org/10.3389/fbioe.2015.00148
Satyanarayana, T., Noorwez, S. M., Kumar, S., Rao, J. L. U. M., Ezhilvannan, M., and Kaur, P. (2004). Development of an Ideal Starch Saccharification Process Using Amylolytic Enzymes from Thermophiles. Biochem. Soc. Trans. 32 (2), 276–278. https://doi.org/10.1042/bst0320276
Schröder, C., Burkhardt, C., and Antranikian, G. (2020). What We Learn from Extremophiles. ChemTexts 6 (1), 8. https://doi.org/10.1007/s40828-020-0103-6
Sharma, A., Kawarabayasi, Y., and Satyanarayana, T. (2012). Acidophilic Bacteria and Archaea Acid Stable Biocatalysts and Their Potential Applications. Extremophiles 16 (1), 1–19. https://doi.org/10.1007/s00792-011-0402-3
Sharma, A., Parashar, D., and Satyanarayana, T. (2016). “Acidophilic Microbes Biology and Applications,” in Biotechnology of Extremophiles Advances and Challenges. Editor P. H. Rampelotto (Cham Springer International Publishing), 215–241. https://doi.org/10.1007/978-3-319-13521-2_7
Shen, J.-D., Cai, X., Liu, Z.-Q., and Zheng, Y.-G. (2021). Nitrilase a Promising Biocatalyst in Industrial Applications for green Chemistry. Crit. Rev. Biotechnol. 41 (1), 72–93. https://doi.org/10.1080/07388551.2020.1827367
Singh, A., and Singh, A. K. (2017). Haloarchaea worth Exploring for Their Biotechnological Potential. Biotechnol. Lett. 39 (12), 1793–1800. https://doi.org/10.1007/s10529-017-2434-y
Singh, S. P., Kumari, M., Padhi, S., Sharma, S., Phukon, L. C., and Rai, A. K. (2021). Biotechnological Potential of Psychrophilic Microorganisms as the Source of Cold-Active Enzymes in Food Processing Applications. 3 Biotech. 11 (11), 479. https://doi.org/10.1007/s13205-021-03008-y
Skousen, J. G., Ziemkiewicz, P. F., and Mcdonald, L. M. (2019). Acid Mine Drainage Formation, Control and Treatment Approaches and Strategies. Extractive Industries Soc. 6 (1), 241–249. https://doi.org/10.1016/j.exis.2018.09.008
Stom, D. I., Zhdanova, G. O., Kalashnikova, O. B., Bulaev, A. G., Kashevskii, A. V., Kupchinsky, A. B., et al., (2021). Acidophilic Microorganisms Leptospirillum sp., Acidithiobacillus sp., Ferroplasma Sp. As a Cathodic Bioagents in a MFC. Geomicrobiology J. 38 (4), 340–346. https://doi.org/10.1080/01490451.2020.1856980
Sun, Z. Paul, C., Hanefeld, U., Hollmann, F., Qu, G., Yuan, B., (2024). Enzyme engineering for biocatalysis. Molecular Catalysis, 555, 113874.
Sysoev, M., Grötzinger, S. W., Renn, D., Eppinger, J., Rueping, M., and Karan, R. (2021). Bioprospecting of Novel Extremozymes from Prokaryotes—The Advent of Culture-independent Methods. Front. Microbiol. 12, 196. https://doi.org/10.3389/fmicb.2021.630013
Tang, F., Chen, D., Yu, B., Luo, Y., Zheng, P., Mao, X., et al., (2017). Improving the Thermostability of Trichoderma Reesei Xylanase 2 by Introducing Disulfide Bonds. Electron. J. Biotechnol. 26, 52–59. https://doi.org/10.1016/j.ejbt.2017.01.001
Tatta, M., Mewis, K., and Hallam, S. J. (2011). The Art and Design of Functional Metagenomic Screens. Curr. Opin. Biotechnol. 22 (3), 465–472. https://doi.org/10.1016/j.copbio.2011.02.010
Van de Voorde, I., Goiris, K., Syryn, E., Van Den Bussche, C., and Aerts, G. (2014). Evaluation of the Cold-Active Pseudoalteromonas Haloplanktis β-galactosidase Enzyme for Lactose Hydrolysis in Whey Permeate as Primary Step of D-Tagatose Production. Process Biochem. 49 (12), 2134–2140. https://doi.org/10.1016/j.procbio.2014.09.010
Vester, J. K., Glaring, M. A., and Stougaard, P. (2015). Improved Cultivation and Metagenomics as New Tools for Bioprospecting in Cold Environments. Extremophiles 19, 17–29. https://doi.org/10.1007/s00792-014-0704-3
Vieille, C., and Zeikus, G. J. (2001). Hyperthermophilic Enzymes Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43. https://doi.org/10.1128/mmbr.65.1.1-43.2001
Villarino, L., Chordia, S., Alonso-Cotchico, L., Reddem, E., Zhou, Z., Thunnissen, A. M. W.,...& Roelfes, G. (2020). Cofactor binding dynamics influence the catalytic activity and selectivity of an artificial metalloenzyme. ACS catalysis, 10(20), 11783-11790.
Villegas-Plazas, M., Sanabria, J., and Junca, H. (2019). A Composite Taxonomical and Functional Framework of Microbiomes under Acid Mine Drainage Bioremediation Systems. J. Environ. Manage. 251, 109581. https://doi.org/10.1016/j.jenvman.2019.109581
Waeonukul, R., Kosugi, A., Tachaapaikoon, C., Pason, P., Ratanakhanokchai, K., Prawitwong, P., et al., (2012). Efficient Saccharification of Ammonia Soaked rice Straw by Combination of Clostridium Thermocellum Cellulosome and Thermoanaerobacter Brockii β-glucosidase. Bioresour. Techn. 107, 352–357. https://doi.org/10.1016/j.biortech.2011.12.126
Wang, P., Li, L., Liu, Z., Zhang, M., Meng, D., Liu, X., et al., (2020). Insights into the Metabolism and Evolution of the Genus Acidiphilium, a Typical Acidophile in Acid Mine Drainage. mSystems 5 (6), e00867–00820. https://doi.org/10.1128/mSystems.00867-20
Wang, X., Li, S., Yang, X., Yang, S., and Zhu, M., (2012). Technology Prospecting on Enzymes Application, Marketing and Engineering. Comput. Struct. Biotechnol. J. 2 (3), e201209017. https://doi.org/10.5936/csbj.201209017
Wanyonyi, W. C., and Mulaa, F. J. (2020). in Alkaliphiles in Biotechnology. Editors G. Mamo, and B. Mattiasson (Cham Springer International Publishing), 195–220.
Wanyonyi, W. C., Onyari, J. M., Shiundu, P. M., and Mulaa, F. J. (2016). New Eco-Friendly and Clean Method of Processing Hides and Fish Skins into Leather Using Alkaline Protease Enzyme. Patent, (KE/P/2015/2231).
Wiltschi, B., Cernava, T., Dennig, A., Casas, M. G., Geier, M., Gruber, S.,...& Wriessnegger, T. (2020). Enzymes revolutionize the bioproduction of value-added compounds From enzyme discovery to special applications. Biotechnology advances, 40, 107520.
Xue, Y.-P., Liu, Z.-Q., Lu, M.-M., Zhang, X.-H., Cheng, F., Xu, J.-M., et al., (2018). Significant Improvement of the Nitrilase Activity by Semi-rational Protein Engineering and its Application in the Production of Iminodiacetic Acid. Int. J. Biol. Macromolecules 116, 563–571. https://doi.org/10.1016/j.ijbiomac.2018.05.045
Ya?ar Y?ld?z S, Radchenkova N. Exploring Extremophiles from Bulgaria Biodiversity, Biopolymer Synthesis, Functional Properties, Applications. Polymers. 2024; 16(1)69. https://doi.org/10.3390/polym16010069
Zhang, L., Sun, R., Li, Y., Lin, N., Ou, C., Wang, X., et al., (2020). Removal of Heavy Metals Using a Novel Sulfidogenic AMD Treatment System with Sulfur Reduction Configuration, Performance, Critical Parameters and Economic Analysis. Environ. Int. 136, 105457. https://doi.org/10.1016/j.envint.2019.105457
Zhu, D., Adebisi, W. A., Ahmad, F., Sethupathy, S., Danso, B., & Sun, J. (2020). Recent development of extremophilic bacteria and their application in biorefinery. Frontiers in Bioengineering and Biotechnology, 8, 483.
![]() |
![]() |
![]() |
![]() |
![]() |