Follow
International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer


See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:3, March, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : editorijcmas@gmail.com /
submit@ijcmas.com
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(3): 211-230
DOI: https://doi.org/10.20546/ijcmas.2024.1303.021


Diversity of Cellulolytic Bacteria in Soils Revealed by 16S rRNA Gene Sequençing Analysis in Brazzaville, Republic of Congo
Irène Marie Cécile Mboukou Kimbatsa1, 3, Thantique Moutali Lingouangou1, 3, Léa Gwladys Gangoue1, 3, Itsouhou Ngô1, 3, Faly Armel Soloka Mabika1, 3, 2, Joseph Goma-Tchimbakala1 and Etienne Nguimbi1, 2, 3*
1Molecular and cellular Biology laboratory, Faculty of Sciences and Techniques, Marien Ngouabi University, Brazzaville, Republic of Congo
2National Institute of Exactes and Natural Sciences Naturelles (IRSEN), Brazzaville,Republic of the Congo
3Unit of de Molecular Microbiology and Bioinformatics, Faculty of Sciences et Techniques, Marien Ngouabi University, Brazzaville, Republic of the Congo
4Laboratory of Geomatics and Applied Tropical Ecology, Higher Normal School of Agronomy and Forestry, Marien Ngouabi University, Brazzaville, Republic of Congo
*Corresponding author
Abstract:

The study was aimed to isolate bacteria from different soil samples and phenotypically characterize the bacterial isolates. Subsequently, selected isolates were tested for their ability to produce cellulolytic enzymes and molecularly identified through 16S rRNA gene sequencing and phylogenetic analysis. Four sites each constituting a sampling point were sampled in Brazzaville in the Republic of Congo. pH measurement, Enumeration, phenotypic and16S rRNA gene molecular characterization as well as cellulolytic potential of isolates were performed. The pH whose values vary between 6.5 and 7 was measured. From the basic classical techniques of microbiology, the total aerobic mesophilic flora on Plate Count Agar (PCA) medium in CFU / g at 102 gave values between 12 ± 4.3 to 22.65 ± 7 and the bacteria of the genus Bacillus on Mossel, values between 16.5 ± 0.7 to 20.5 ± 2.1. Bacteria in the form Cocci and bacillus, gram negative and gram positive, all catalase positive were obtained. Out of a total of 84 isolates phenotypically characterized in this study: 10 isolates were molecularly identified, but only 4 were submitted to the GenBanck database whose accession numbers for each strain are as follows: Pantoea dispersa MLTBY6 (MT646430.1); Pseudomonas aeruginosa MLTBM2 (MT646431.1); Bacillus subtilis MLTBC5 (MT674681.1) and Pseudomonas monteilii MLTBC10 (MT674682.1). The phylogenetic classification inferred with MEGA.7 clearly show the bacterial diversity of the studied soils. The search for bacteria with cellulolytic potential in the soil opens a door for the production of cellulolytic enzymes for industrial production. This study, which provides an overview of the microbiological diversity of soil samples in Brazzaville, was to be extended to the whole city of Brazzaville, as well as to other cities in the country. This will open up prospects for new approaches to identification using targeted meta-genomics.


Keywords: Soils, Molecular Identification, Phylogenetic Classification, cellulolytic, 16SrRNA Gene


References:

Acharya P. B., Acharya D. K., and Modi H. A. (2008). Optimization for cellulase production by Aspergillus niger using sawdust as substrate African Journal of Biotechnology. 7. (22). 4147-4152. https://doi.org/10.5897/AJB08.689

Afnor., “Qualité de l’eau”, Ed. AFNOR, Paris (1999)

Ahombo, Gabriel., Baloki, Ngoulou. Tarcisse1., Moyen, Rachel., Kayath, Aimé. Christian., Ontsira, Ngoyi, Nina. Esther., Study of Colistin Resistance Encoded by the mcr-1 Gene in Community and Clinical Pseudomonas, 2020, 99- 101.

Altschu, F. S., Gish, W., Miller, W., Myers, W. E., and Lipman. J. D. (1990) : Basic Local Alignement searchTool. J.Mol. Biol. 215 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2

Amika, A. M. and Md, A. A. M. 2018. Isolation of Bacillus spp. Bacteria from soil for Production of Cellulase. https://doi.org/10.3126/njb.v6i1.22338

Anderson, B., sims, K. Regnery. R. (1994). Detection of Rochalimaea henselae DNA in specimens from cat scartch disease patients by PCR. J clin Microbiol. 32 : 942- 8. https://doi.org/10.1128/jcm.32.4.942-948.1994

Austin, D. A., and Baker, J. H., (1988). Fate of bacteria ingested by larvae of the freshwater may fly, Ephemera danica, Micro Fcol, 15: 323-332. https://doi.org/10.1007/BF02012645

Balvanera, P., Pfisterer, A. B., BuchmannN, HeJS, Nakashizuka, T., Raffaelli D, Schmid B., (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett9 :1146– 1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x

Beijerinck, M. W., (2013). De infusies en de ontdekking der backterien. Jaarboek van de Koninklijke Akademie voor Wetenschappen. Amsterdam, the Netherlands: Muller.

Bruand, A. (2009). Qu’est-ce que le sol ? in Le sol, Dossier INRA, pp. 12–17.

Coleman, D. C and Whitman, W B., (2005). Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49 :479–497. https://doi.org/10.1016/j.pedobi.2005.05.006

Dauga, C., Miras, J., Grimont, P A D. (1997). Strategy for Detection and identification of bacteria based on ARNr16S genes in suspected whipple’s disease. J Med Microbiol. 46 : 340- 7. https://doi.org/10.1099/00222615-46-4-340

Deguchi. S., Tsujii. K, Horikoshi. K. (2006). Cooking Cellulose in hot and compressed water. Chemical communications 31 : 3293 – 3295 https://doi.org/10.1039/B605812D

Etienne, Nguimbi., Cyr, Jonas. Morabandza., Alain, Brice, Vouidibio. Mbozo., Mireille, Huguette. Belle, Mbou., Sayida, Norgela. Miakassissa., Faly, Armel Soloka Mabika. (2020). Microbial Biodiversity of a Traditional Food Made from Squash Seeds "NTETE" Consumed in Brazzaville, Republic of Congo. 87- 92.

Fergani et Lakhel., (2015). Activités cellulolytiques de Trichoderma longibrachiatum cultivée sur son de blé. Mémoire Master :Biotechnologie des mycètes. Constantine : Université Mentouri, 56.

Fossou., R. K., N. K. Ii Kouassi., G. C. Z. Kouadjo., S. M. I. B. Zako., Et A. Zeze. (2012). Diversite de rhizobia dans un champ cultive de pois d’angole (Cajanus cajan L.,) (legumineuses) a yamoussoukro (centre côte d’ivoire)

Gibson, T., and Gordon, R. E., (1974). Genus I. Bacillus. In Bergey’s Manual of determinative bacteriology. Williams & Wilkins Co., Baltimore. p. 541

Gignoux, J., House, J., Hall, D., Masse, D., Nacro, H., B, Abbadie L U C., (2001). Design and test of a generic cohort model of soil organic matter decomposition: the SOMKO model. 639–660. https://doi.org/10.1046/j.1466-822X.2001.t01-1-00250.x

Gusils, C., Chaia, A. P., Olivier, G., and Gonzalez, S. (2010). Microtechnique for identification of lactic acid bacteria. Methods in molecular biology: Public Health Microbiology: Methods and Protocols. Humana Press. Totowa, 268 : 453-458. https://doi.org/10.1385/1-59259-766-1:453

Hamdi, Sahraoui., Amel, Jrad., et Hafedh, Jamil, Mellouli., (2012). Épandage des margines sur les sols agricoles : impacts environnementaux microbiologiques. 100- 106.

Hans-Jiirgen., Busse, Ewald B. M., Denner, Werner. Lubitz., (1996). Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. 3- 38. https://doi.org/10.1016/0168-1656(96)01379-X

Hind, Leghlimi., 2013. Production and characterization of cellulolytic activities. Journal of biotechnology 12 (5).

Kim B. S., Lonsdale J., Seong C.N., et Goodfellow M., “Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae,” Ant. V Leeuwenhoek., vol. 83, pp. 107-116, 2003.

Kim, M., Oh, H-S., Park S-C, Chun J.(2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology 64 :346–351. https://doi.org/10.1099/ijs.0.059774-0.

Kuhad R C., Gupta R and Singh A. (2011). Microbial Cellulases and Their Industrial Applications Review Article. Enzyme Research. https://doi.org/10.4061/2011/280696

Kumar, S. & Tuteja, U., 2009. Detection of Virulence-Associated Genes in Clinical Isolates of Bacillus anthracis by Multiplex PCR and DNA Probes. J Microbiol Biotechnol. 19 : 1475-1481. https://doi.org/10.4014/jmb.0902.101

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870-1874. https://doi.org/10.1093/molbev/msw054

Labeda D. P., Goodfellow M., Brown R., Ward A. C., Lanoot B., Vanncanneyt M., Swings J. et al., 2012. “Phylogenetic study of the species within the family Streptomycetaceae,” Antonie van Leeuwenhoek, vol. 101, pp. 73-104. https://doi.org/10.1007/s10482-011-9656-0

Laurent F. J., Provost F., Boiron P., 1999 “Rapid identification of clinically relevant Nocardia species to genus level by 16S rRNA gene PCR,” J. Clin. Microbiol., vol. 37, pp. 99-102. https://doi.org/10.1128/jcm.37.1.99-102.1999

McHardy, A. C., & Rigoutsos I. (2007). What's in the mix : phylogenetic classification of metagenome sequence samples. Curr Opin Microbiol. 10 : 499-503. https://doi.org/10.1016/j.mib.2007.08.004

McMahon, S. K., Williams, M. A., Bottomley, P. J., Myrold, D. D., (2005). Dynamics of microbial communities during decomposition of carbon-13 labeled ryegrass fractions in soil. Soil Sci Soc Am J 69:1238-1247. https://doi.org/10.2136/sssaj2004.0289

Moïse Doria. Kaya-Ongoto., Christian. Aimé. Kayath., Alain. Brice. Vouidibio Mbozo., Gyna. Mobandolaka Mitoko., Sandra. Paola. Elenga Wilson., Duchel. Jeanedvi. Kinouani Kinavouidi., Etienne. Nguimbi. (2020). Prime Enzymatic Exocellular Background of Lysinibacillus louembei. 101- 109. https://doi.org/10.4236/aim.2020.103009

Moutou-Tchitoula., Didine. Priscilla., Etienne. Nguimbi., Stéphanie. Giusti-Miller. Philippe. Mora., Simon. Charles. Kobawila., Edouard. Miambi., Assessment of dominant bacterial strains isolated from Ntoba mbodi, an indigenous African alkaline-fermented food, and their potential enzyme activities. Afr J Microbiol Res, (2018), 12(32): 779-787. https://doi.org/10.5897/AJMR2018.8875

Ngo-Itsouhou, Etienne Nguimbi., Rachel Moyen., Armel Faly and Soloka Mabika., (2019). Harnessing Biological Activities in Soil-Bacillus Strains to Promote the Discovery of New Bioactive Compounds. 35- 38. https://doi.org/10.12691/jaem-8-1-5

Ngo-Itsouhou, Nguimbi Etienne, Kayath Aimé Christian, and Ampa Raoul. (2020). Molecular Identification, Phylogenetic Classification and Proteolytic Capacity of Cultivable Bacteria Isolated from Soils in Brazzaville. 4-8. https://doi.org/10.54987/jobimb.v7i2.475

Oh. S. Y., Yoo. D. I., Shin. Y., Kim. H. C., Kim. H. Y., Chung. Y. S., Park. W. Y., Youk. J. H. (2005). Crystalline structure Analysis of cellulose treated with sodium hydroxide and carbone dy means of X_ray diffraction and FTIR spectroscopy. Carbohydrate Research 2376 – 2391 https://doi.org/10.1016/j.carres.2005.08.007

Puri, S., Beg, Q. K., & Gupta, R. (2002). Optimization of Alkaline Protease Production from Bacillus sp. by Response Surface Methodology. Current Microbiology. 44, 286–290. https://doi.org/10.1007/s00284-001-0006-8

Rappe, M. S., & Giovannoni, S. J., (2003). The uncultured microbial majority. Annu Rev Microbiol. 57 : 369-394. https://doi.org/10.1146/annurev.micro.57.030502.090759

Roesch, L. F., Fulthorpe, R. R., Riva, A., (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. Isme J. 1 : 283-290. https://doi.org/10.1038/ismej.2007.53

Rouhou, C. (2006). Evaluation des classifications phylogénétiques des bacillaceae basées sur les gènes de l’opéron rrn et de gènes de ménage. Mémoire pour l’obtention du diplôme de Master. Université Québec A Montrela.

Sauvageon, T. (2012). Optimisation d’une hydrolyse enzymatique dans le processus de transformation de matériel ligno-cellulosique en bioéthanol. Projet de fin d’étude. Université de Lorraine. France.

Sneath, P. H. A., and Sokal, R. R. (1973). Numerical Taxonomy. Freeman, San Francisco.Syst. Bacteriol., vol. 44, pp. 846-849, 1994.

Soloka, Mabika. Faly. Armel. (2020). Caractérisation des enzymes fibrinolytiques des Bacillus isolés des courges ‘’Tété’’ et des feuilles fermentées de manioc ‘’ntoba mbodi’’. Thèse soutenue pour l’obtention du diplôme de doctorat en sciences exactes et naturelles.

Srinivasan, R., Karaoz, U., Velogova, M., Macklichan, J., Kato-Maeda, M., Miller, S., Nadarajan, R., Brodie, E. L., Lynch, S. V. (2015), Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens. PloS ONE 10(2) :e0117617. https://doi.org/10.1371/journal.pone.0117617 

Stackebrandt, E., and Goebel B. M., “Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequences analysis in the present species definition in Bacteriology,” Int. J. Syst. Bacteriol., vol. 44, pp. 846-849, 1994.

Swift, M, J., Andren, O., Brussaard, L., Briones, M., Couteaux, M-M., Ekschmitt K.,(1998). Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Glob Chang Biol 4:729–743. https://doi.org/10.1046/j.1365-2486.1998.00207.x

Tamura, K., Nei, M., and Kumar. S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101 :11030-11035. https://doi.org/10.1073/pnas.0404206101

Vitousek, P., M & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry. 13: 87-115. https://doi.org/10.1007/BF00002772

Weisburg, W. G., Barns S. M., Pelletier D. A., Lane D. J., 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol, 1991 ; 173 : 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991

Wulff, E. G., Mguni, C. M., Mansfeld-Giese. K., Fels. J., Lübeck. M., Hockenhull, J., Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. (2002) ; Plant Pathol.;51(5):574–584. https://doi.org/10.1046/j.1365-3059.2002.00753.x

Xu, B. (2002). Endoglucanase and Mannanase from Blue Mussel, Mytilus edulis: Purification, Characterization, Gene and Three Dimensional Structure. Thèse de doctorat. Faculty of Science and Technology, Uppsala University, Sweden.

Xu, X., Stern, A., Liu, Z. Kan, B.& Zhu, J.,(2010). Virulence regulator AphB enhances to xR transcription in Vibrio cholerae. BMC Microbiology. 10: 3. https://doi.org/10.1186/1471-2180-10-3


Download this article as Download

How to cite this article:

Irène Marie Cécile Mboukou Kimbatsa, Thantique Moutali Lingouangou, Léa Gwladys Gangoue, Itsouhou Ngô, Faly Armel Soloka Mabika, Joseph Goma-Tchimbakala and Etienne Nguimbi. 2024. Diversity of Cellulolytic Bacteria in Soils Revealed by 16S rRNA Gene Sequençing Analysis in Brazzaville, Republic of Congo.Int.J.Curr.Microbiol.App.Sci. 13(3): 211-230. doi: https://doi.org/10.20546/ijcmas.2024.1303.021
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

Citations