International Journal of Current Microbiology and Applied Sciences (IJCMAS)
IJCMAS is now DOI (CrossRef) registered Research Journal. The DOIs are assigned to all published IJCMAS Articles.
Index Copernicus ICI Journals Master List 2022 - IJCMAS--ICV 2022: 95.28 For more details click here
National Academy of Agricultural Sciences (NAAS) : NAAS Score: *5.38 (2020) [Effective from January 1, 2020] For more details click here

Login as a Reviewer

See Guidelines to Authors
Current Issues
Download Publication Certificate

Original Research Articles                      Volume : 13, Issue:3, March, 2024

PRINT ISSN : 2319-7692
Online ISSN : 2319-7706
Issues : 12 per year
Publisher : Excellent Publishers
Email : /
Editor-in-chief: Dr.M.Prakash
Index Copernicus ICV 2018: 95.39
NAAS RATING 2020: 5.38

Int.J.Curr.Microbiol.App.Sci.2024.13(3): 102-112

Management of Root-Knot Nematodes in Peas Using Bacterial and Fungal Bio-Agents: A Review
Moirangthem Chanu Lankubee*, Kshetrimayum Sumita,Yengkhom Arun Singh and Abhiraj Atul Patil
Department of Plant Pathology, College of Agriculture, Central Agricultural University,
Manipur- 795004, India
*Corresponding author

Pea, Pisum sativum L. is one of the most important vegetable crops grown in rabi season throughout the world. It is cultivated worldwide over 5.9 million hectares with a production of about 11.7 million tons. In India, it is grown over 0.7 million hectares yielding about 0.6 million tons. Among various obstacles (biotic stress) in cultivating this crop, root-knot nematode (RKN) which is one of the most economically important plant-parasitic nematodes (PPNs) has been reported to cause severe yield losses of up to 20%-56%. RKNs are polyphagous, sedentary endoparasites which is estimated to cause an annual loss of $ 78 billion in agricultural production around the world. In order to control the infection level, frequent and excessive application of chemical nematicides have caused high toxicity level to the soil ecosystems as well as to the environment. An alternative approach of application i.e., biological control agents is an environmentally safe and effective method for sustainable management of RKNs. Among various bioagents, fungal and bacterial agents were reported to reduce RKN density by inhibiting egg hatching, repelling, immobilizing and killing J2s. Nematophagous fungi are capable of capturing, killing, and digesting nematodes. As a group of important natural enemies of nematode pests, nematophagous bacteria also exhibit diverse modes of action including parasitizing, producing toxins, antibiotics, enzymes, competing for nutrients, inducing systemic resistance of plants and promoting plant health.

Keywords: Root knot nematode (RKN), Plant-parasitic nematodes (PPNs), Biological control agents, Sustainable


Abd-El-Khair, H.; El-Nagdi, W.; Youssef, M.; Abd-Elgawad, M.M. and Dawood, M.G. (2019). Protective effect of Bacillus subtilis, B. pumilus, and Pseudomonas fluorescens isolates against root-knot nematode Meloidogyne incognita on cowpea. Bull. Natl. Res. Cent. 43:1–7.

Anwar, S.A. and Mcknery, M.V. (2010). Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pak.J. Zool.42(2):135-141.

Ashraf, M.S. and Khan, T.A. (2010). Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch. Phytopathol. Plant Protect. 43(6):609–614.

Barros, A.F.; Campos, V.P.; Souza, L.N.; Costa, S.S.; Terra, W.C. and Lessa, J.H. (2018). Morphological, enzymatic and molecular characterization of root-knot nematodes parasitizing vegetable crops. Hortic. Bras. 36:473–479.

Brahma, U. and Borah, A. (2016). Management of Meloidogyne incognita on pea with bioagents and organic amendment. Indian J. Nematol. 46(1):58–61.

Chinheya, C.C.; Yobo, K.S. and Laing, M.D. (2017). Biological control of the root-knot nematode, Meloidogyne javanica (Chitwood) using Bacillus isolates, on soybean. Biol. Control. 109:37–41.

Coyne, D.L.; Cortada, L.; Dalzell, J.J.; Claudius-Cole, A.O.; Haukeland, S.; Luambano, N. and Talwana, H. (2018). Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annu. Rev. Phytopathol. 56:381-403.

Crickmore, N. (2005). Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol. 13: 347–350.

De, R.K.; Ali, S.S. and Dwivedi, R.P. (2000). Interaction between Fusarium oxysporum f. sp. lentis and Meloidogyne javanica in lentil. Indian Phytopathol.53:353.

Decraemer, W. and Hunt, D.J. (2006). Structure and classification. In: Perry, R.N. and Moens, M. (eds.). Plant nematology, CABI Publishing, Wallingford, pp 3–32.

Gogoi, D. and Mahanta, B. (2013). Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on French bean. Ann. Plant. Prot. Sci. 21(1):172–175.

GoI. (2021). Agricultural statistics at a glance 2021. Department of Agriculture, Cooperation and Farmers Welfare, Directorate of Economics and Statistics, Government of India. Accessed 22 November 2023.

Gokta, N. and Swarup, G. (1988). On the potential of some bacterial biocides against root-knot cyst nematodes. Indian J. Nematol. 18: 152–153.

Li, B.; Xie, G.L.; Soad, A. and Coosemans, J. (2005). Suppression of Meloidogyne javanica by antagonistic and plant growth promoting rhizobacteria. J. Zhejiang Univ. Sci. 6B: 496–501.

Lima, F.S.; Correa, V.R.; Nogueira, S.R. and Santos, P.R. (2017). Nematodes affecting soybean and sustainable practices for their management. In: Soybean–basis of yield, biomass and productivity, pp 95–110.

Lin, D.; Qu, L.J.; Gu,H. and Chen, Z. (2001). A3.1-kbgenomic fragment of Bacillus subtilis encodes the protein inhibiting growth of Xanthomonas oryzae pv. oryzae. J. Appl. Microbiol. 91: 1044–1050.

Machado, A.C.Z. (2014). Current nematode threats to Brazilian agriculture. Curr. Agric. Sci. Technol. 20(1):26–35.

Marroquin, L.D.; Elyassnia, D.; Griffitts, J.S.; Feitelson, J.S. and Aroian, R.V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics155: 1693–1699.

Mehtab, A.; Javed, N.; Khan, S.A. and Gondal, A.S. (2013). Combined effect of Pasteuria penetrans and neem extract on the development of root-knot nematode in medicinal plants. Pak.J. Nematol. 31:55–59.

Parihar, K.; Rehman, B.; Ganai, M. A.; Asif, M. and Siddiqui, M. A. (2015). Role of oil cakes and Pochonia chlamydosporia for the management of Meloidogyne javanica attacking Solanum melongena L. J. Plant Pathol. Microbiol. 1:1–5.

Peiris, P.U.S.; Li, Y.; Brown, P. and Xu, C. (2020). Fungal biocontrol against Meloidogyne spp. in agricultural crops: A systematic review and meta-analysis. Biocontrol. 144:104235.

Pownall, T.L.; Udenigwe, C.C. and Aluko, R.E. (2010). Amino acids composition and antioxidant properties of pea seed (Pisum sativum) enzymatic protein hydrolysate fractions. J. Agric. Food Chem.58(8):4712-4718.

Raveendra, H.R.; Krishna, M.R. and Mahesh, K.R. (2011). Management of root-knot nematode Meloidogyne incognita by using oil cake, bioagent, trap crop, chemicals and their combination. Int. J. Sci. Nat. 2:519–523.

Rovira, A.D. and Sands, D.C. (1977). Fluorescent Pseudomonas– a residual component in the soil microflora. J. Appl. Bacteriol. 34: 253–259.

Siddiqui, I. A. (2002). Suppression of Meloidogyne javanica by Pseudomonas aeruginosa and Bacillus subtilis in tomato. Nematol. Mediterr. 30: 125–130.

Siddiqui, I. A. and Shaukat, S. S. (2003). Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil. Biol. Biochem. 35:1615–1623.

Siddiqui, Z. A. and Mahmood, I. (1999). Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technol. 69: 167–179.

Sidhu, G.S. and Webster, J.M. (1981). Genetics of Plant Nematode Interaction. In: Zuckerman, B.M. and Rohde, R.A. (eds.). Plant Parasitic Nematodes. Vol. III, New York: Academic Press, pp 61–87.

Sikandar, A.; Zhang, M.; Wang, Y.; Zhu, X.; Liu, X.; Fan, H. and Duan, Y. (2020). Review Article: Meloidogyne incognita (Root-Knot Nematode) A Risk To agriculture. Appl. Ecol. Environ. Res. 18:1679–1690.

Sikora, R. A. (1992). Management of the antagonistic potential in agriculture ecosystems for the biological control of plant parasitic nematodes. Annu. Rev. Phytopathol. 30: 245–270.

Singh, C. (1983). Field Pea (Pisum spp.) In: Singh, C. (ed.). Modern Techniques of Raising Field Crops, New Delhi: Oxford and IBH Publ. Co. Pvt. Ltd, pp219–228.

Singh, S.; Singh, B. and Singh, A.P. (2015). Nematodes: a threat to sustainability of agriculture. Procedia Environ.Sci. 29:215–216.

Singh, U.B.; Sahu, A.; Sahu, N.; Singh, B.P.; Singh, R.K.; Renu, S.; Jaiswal, R.K.; Sharma, B.K.; Singh, H.B.; Manna, M.C.; Subba Rao, A. and Prasad, R.S. (2013). Can endophytic Arthrobotrys oligospora modulate accumulation of defence related biomolecules and induced systemic resistance in tomato (Lycopersicon esculentum Mill.) against root-knot disease caused by Meloidogyne incognita. Appl. Soil. Ecol. 63:45–56.

Zhao, D.; Zhao, H.; Zhao, D.; Zhu, X.; Wang, Y.; Duan, Y.; et al., (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control. 119:12–19.

Zhao, J.; Wang, S.; Zhu, X.; Wang, Y.; Liu, X.; Duan, Y. and Chen, L. (2021). Isolation, and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb 1997 and Serratia plymuthica Sneb 2001 for the biological control of root-knot nematode. Appl. Soil. Ecol. 164:103924.

Download this article as Download

How to cite this article:

Moirangthem Chanu Lankubee, Kshetrimayum Sumita, Yengkhom Arun Singh and Abhiraj Atul Patil. 2024. Management of Root-Knot Nematodes in Peas Using Bacterial and Fungal Bio-Agents: A Review.Int.J.Curr.Microbiol.App.Sci. 13(3): 102-112. doi:
Copyright: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.