Original Research Article

First Reported Human Case of Bilateral Subcutaneous Phaeohyphomycosis by a New Member of Dothideomycetes (Pleosporales) spp.

P.K. Maiti¹, A. Naha¹, R. Ghosh¹*, P. Ghosh¹ and G. Chatterjee²

¹Department of Microbiology, Institute of Post Graduate Medical Education and Research, Kolkata 700020, West Bengal
²Department of Dermatology, Institute of Post Graduate Medical Education and Research, Kolkata 700020, West Bengal, India
*Corresponding author

Abstract

A 45 years old female from Eastern India presented with painless multi-lobulated subcutaneous swellings on both forearms. She was controlled diabetic. From drained pus and biopsy materials dematiaceous fungal hyphae were demonstrated by KOH mount and PAS staining. Coffee brown colonies grew on SDA medium which showed brown branched hyphae with lateral anastomosis but no conidiogenesis. By molecular identification it was concluded as a new member of Dothideomycetes (Pleosporales) spp showing 86% sequence similarity with Microsphaeropsis arundini. By further morphological study bitunicate asci and asexual ascostromal development was noted. Thus it became first reported human case by such plant pathogen fungi. The probable reason for bilateral involvement might be due to her occupational trauma by carrying a type of elephant grass. The patient was managed by surgical excision and itraconazole therapy.

Keywords
Phaeohyphomycosis, Dematiaceous, Dothideomycetes, Pleosporales, Microsphaeropsis

Introduction

Melanized or dematiaceous fungi are ubiquitously present saprophytes and also enormously present on dead and living plants. The most common type of clinical presentation caused by dematiaceous fungi is phaeohyphomycosis of skin and subcutaneous tissue following minor, unrecognizable trauma by plant or vegetable material (Revankar and Sutton, 2010). In recent time many rare and new members of this group are emerging as important human pathogen. Apart from the common known human pathogens like Alternaria spp., Bipolaris spp., Exophiala spp., Cladosporium spp., Madurella spp., Sporothrix spp., various black fungi belonging to Phylum Ascomycota, which are very new to medical mycologists are increasingly causing infections these days among immunocompromised as well as immunocompetent persons (Revankar and Sutton, 2010). It imposes difficulties in morphological identification and need for molecular methods in routine mycology.
laboratory. Here we report the first case of bilateral subcutaneous phaeohyphomycosis by a new member of Dothideomycetes (Pleosporales) spp. in an immunocompetent host.

Case report

A 45 years old female from Howrah district, South Bengal, India presented with multi-lobulated subcutaneous swellings of about 5 cm sizes on dorsal as well as ventral aspects of both forearms (Fig 1a). Lesions were chronically increasing for last eight months. There was no history of trauma, pain or fever. She was hypertensive and diabetic though her sugar level (fasting, post-prandial, HBA1c level) was well controlled with medication at the time of presentation. All the relevant biochemical investigations were carried out which includes: Hb%, WBC total count, urea, creatinine, LFT, Lipid profile, RPR, Thyroid profile, serum cortisol level (Baseline and after dexamethasone challenge) as well as USG whole abdomen, Chest X-Ray, CT Scan of Brain. All reports were within normal limit. She was also non-reactive for HIV, HBsAg, anti-HCV tests.

We took pus and biopsy sample for investigation. The KOH mount of aspirated material revealed presence of brown septate branching hyphae, which were also PAS positive on staining (Fig 1b, 1c). Case was diagnosed as subcutaneous phaeohyphomycosis and itraconazole therapy was initiated empirically. Surgical excision of lesions was also undertaken.

Material was directly cultured onto Sabauraud’s dextrose agar (SDA, HiMedia) and incubated at 25°C and 37°C. After 10 days of incubation both the tubes showed floccose to velutinous, dark mouse grey to coffee brown colonies (2–3.5 mm in diameters). The reverse appeared ledean black to violaceous black (Fig. 2a,b). Lacto Phenol cotton blue preparation of the colonies showed thick and thin to dark golden brown as well as sub hyaline branching hyphae up to 5µm thick. Characteristic right angle branched hyphae with constriction at the site of origin & lateral anastomosis was observed (Fig. 2c). No conidia or asexual fruiting bodies were evident after prolong incubation and subculture on cornmeal agar (CMA, HiMedia). Similar fungi isolated from lesions on both the hands and also present in histopathological examination (Fig. 1d). Based on the morphological characters we provisionally diagnosed it as Rhizoctonia spp. though we failed to find sclerotia. Then the isolate was subcultured on SDA and sent to National Fungal Culture Collection, India (NFCCI) at Pune for molecular identification and also deposition of the strain in the culture collection with unique accession number. After sequencing the isolate (NCBI accession JQ759930.1/ isolate FL0071/ Dothideomycetes sp. Genotype 223) showed 86% sequence similarity with Microsphaeropsis arundinis and diagnosed as a new member of Dothideomycetes (Pleosporales) family (Fig. 3). Then we started further morphological studies after prolong incubation and appreciated few structures like bitunicate asci, multi-cellular fruiting body arising from hyphae (Fig. 4) but failed to find any pycnidium.

Following surgical excision itraconazole therapy continued for 3 months, patient responded and no recurrence reported within one year of follow up period.

Dothideomycetes is a diverse class of ascomycetes fungi, characterized with bitunicate (thick, double layered) asci without any apical pore and ascolstromatic or ascolocular development of pseu
(perithecia initiated from non-sexual vegetative hyphal cells (Schoch et al., 2009). Predominantly plant pathogen this class of fungi is divided into several subclasses and orders though poorly understood till date. Amongst the seven orders, *Pleosporales* comprises the commonest causative agents of phaeohyphomycosis. Besides the well-known melanized anamorphic hyphomycetes e.g. *Alternaria, Curvularia* few unusual coelomycetes e.g. *Microsphaeropsis, Phoma, Pleurophoma* are sporadically reported as human pathogen (Guarro et al., 1999; Shah et al., 2001; Padhye et al., 2004; Stella et al., 2004; Galipothu et al., 2015).

A heterogenous group of Ascomycotic fungi are called as ‘Mitosporic Ascomycota’ due to absence of any sexual stage. *Microsphaeropsis* is a member of this group and also comes under coelomycetes group as conidia born inside closed sac which forms only asexual fruiting body, called Pycnidia with small aseptate conidia (Sutton, 1980). Pycnidium is an asexual version of perithecium, as the first one produces conidia and the other produces sexual ascospores.

Different species of *Microsphaeropsis* are identified on the basis of structural difference of pycnidia and conidia. But production of pycnidium is very difficult and slow, needs various special sporulating culture media like carnation leaf agar and long term incubation.

In our routine laboratory with only two simple fungal media in hand, it was not possible to sporulate the isolate. Previous reports expressed such difficulties and took help of reference laboratory of morpho-identification of such isolates (Stella et al., 2004). Therefore molecular techniques are the new tool to solve the mystery of plant pathogen fungus which are affecting human newly.

Kingdom: Fungi
Phylum: Ascomycota
Class: Dothideomycetes
Order: Pleosporales
Family/Clade: Didymellaceae
Genera: Microsphaeropsis
Species:
- *Microsphaeropsis arundinis*
- *Microsphaeropsis olivaces*
- *Microsphaeropsis callista*
- *Microsphaeropsis conielloides*

Phylogenetic tree of Microsphaeropsis according to multi-locus DNA sequencing (Zhang et al., 2009).

Our case was apparently healthy patient without any systemic disease presented with bilateral lesions and there was no organ dissemination found after radiological investigations. Meticulous history taking uncover her habit of carrying bundles of ‘hogla leaves’ on her forearm leading to minor trauma. ‘Hogla’ plants (*Typha elephantina*) or elephant grass, a gigantic marsh plant luxuriously grown in canals, roadside shallow water of southern Bengal is used for thatching. Literature study revealed *Microsphaeropsis arundinis* was first isolated from *Arundo donax*, similar type of grass growing in wetlands (Ahmad, 1971) and thereafter many marine plants (Wanderley Costa et al., 2012). Further research may explore relation of this fungus with hogla plant. In present case bilateral traumatic implantation might be possible reason for bilateral disease. In subcutaneous mycoses among immune-competent bilateral incidence is exception rather than rule (Maiti et al., 2000).
Fig.1(a) Multi-lobulated subcutaneous lesions before treatment. (b) KOH mount of pus showed brown septate branching hyphae (400x). (c) Pas positive branching fungal hyphae (1000x). (d) Fungal elements present in histopathological slide (1000x).
Fig. 2 (a) and (b) Obverse and reverse side of dematiaceous fungal colony on Sabauraud's dextrose agar. (c) Lacto Phenol cotton blue preparation of the colonies showed brown right angle branching hyphae with lateral anastomosis (400x)

Fig. 3 Sequence analysis of ~500bp rDNA fragment showed 86% sequence similarity with Microsphaeropsis arundinis. Possibly a new member of Dothideomycetes (Pleosporales) spp.
Fig. 4(a) Bitunicate asci, (b) multi-cellular fruiting body arising from hyphae were observed under microscope (400x)

Acknowledgement

The authors are thankful to National Fungal Culture Collection, India (NFCCI) at Pune for molecular identification of fungal isolate.

References

Stella, P., Kerry, W., Michael, P., Anthony, G., Bernard, H., George, K., Robert, P.

