Original Research Article

Clinical Characteristics and Antimicrobial Susceptible Patterns of Streptococcus dysgalactiae subsp, equisimilius Isolates during 2009-2013 in Japan

Masaaki Minami¹*, Mamiko kuriyama¹, Yoshiko Ohshima¹, Ryoko Sakakibara², Taichi Imura², Hideo Morita², Naoto Kanemaki³ and Michio Ohta⁴

¹Department of Bacteriology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
²Department of Clinical investigation, Daido hospital, Nagoya, Japan
³Department of Gastroenterology, Daido hospital, Nagoya, Japan
⁴School of Nursing, Sugiyama Jyogakuen University, Nagoya, Japan

*Corresponding author

ABSTRACT

Streptococcus dysgalactiae subsp. equisimilius cause various infectious diseases from acute pharyngitis to streptococcal toxic shock syndrome. Though Streptococcus dysgalactiae subsp. equisimilius infection has been increasing recently, the comprehensive characteristic investigation of the Streptococcus dysgalactiae subsp. equisimilius isolated in medical institution has not been performed in Japan. In this study, we investigated the clinical characteristics and antimicrobial susceptible patterns of 134 Streptococcus dysgalactiae subsp. equisimilius isolated at single medical institution during 2009 – 2013 in Japan. There was no significant difference between genders in Streptococcus dysgalactiae subsp. equisimilius. Half of Streptococcus dysgalactiae subsp. equisimilius isolated at single medical institution during 2009 – 2013 in Japan. The clinical department from which Streptococcus dysgalactiae subsp. equisimilius were from over age 60. The clinical department from which Streptococcus dysgalactiae subsp. equisimilius was isolated most was pediatrics. Streptococcus dysgalactiae subsp. equisimilius in this study were completely susceptible to β-lactam antibiotics. In Streptococcus dysgalactiae subsp. equisimilius, clarithromycin, clindamycin, and minocycline non-susceptible rates were approximately 37%, 23% and 25%, respectively. Nonsusceptible rate of ciprofloxacin against Streptococcus dysgalactiae subsp. equisimilius was about 55%. Our results suggest the need for continuous antimicrobial susceptibility survey of Streptococcus dysgalactiae subsp. equisimilius.

Keywords
Streptococcus dysgalactiae subsp, equisimilius. Clinical characteristics, antimicrobial susceptibility

498
Introduction

Most β-hemolytic streptococcus from human are identified as Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. equisimiliius (Facklam, 2002). In contrast to Streptococcus pyogenes and Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimiliius were long considered as commensal organisms that only rarely cause invasive infections as opportunistic pathogens (Brandt and Spellerberg, 2009). In 1996, Streptococcus dysgalactiae subsp. equisimiliius was proposed to be a new streptococcal taxon (Vandamme et al., 1996). It has also been reported to cause a wide variety of human infections such as pharyngitis, cellulitis, sepsis, meningitis, endocarditis, and streptococcal toxic shock syndrome (STSS) (Woo et al., 2001; Hashikawa et al., 2004).

Streptococcus dysgalactiae subsp. equisimiliius possesses many virulence factors shared with Streptococcus pyogenes, such as M protein, streptolysin O, streptolysin S, streptokinase, and streptococcal inhibitory of complement lysis (Walter, 1989; Okumura, 1994; Schnizler, 1995; Humar, 2002; Minami, 2011). Although bacterial factors have been investigated precisely, little is known about the clinical characteristics of Streptococcus dysgalactiae subsp. equisimiliius in Japan (Sunaoshi, 2010; Ichikawa, 2011). The present study was conducted to find out the clinical characteristics and antimicrobial susceptible patterns of Streptococcus dysgalactiae subsp. equisimiliius isolated in Japan.

Materials and Methods

Strains and clinical data collection

A total of 134 Streptococcus dysgalactiae subsp. equisimiliius isolates were obtained from various clinical specimens at Daido Hospital in Japan from 2009 to 2013. We used medical records appended to clinical species for the analysis of clinical feature at Daido Hospital. We considered several isolates from the same region of the same patient as one isolate per one patient for the analysis in this study. All streptococci were identified by standard conventional biochemical methods or the VITEK2 system (bioMe’rieux, Durham NC, USA). Furthermore, we determined the identification of Streptococcus dysgalactiae subsp. equisimiliius by 16S ribosomal RNA sequence methods (Woo et al., 2001; Minami, 2011). Our experimental design was approved by the ethics committee at Daido hospital.

Antimicrobial susceptibility analysis

Streptococcus dysgalactiae subsp. equisimiliius isolates were examined for 15 antibiotic susceptibilities as follows; piperacillin, amoxicillin, cefotiam, flomoxef, ceftazidime, ceftriaxone, panipenem, vancomycin, fosfomycin, minocycline, clarithromycin, clindamycin, amikacin, isepamicin, and ciprofloxacin. Antimicrobial susceptibility was determined by the disc diffusion technique (Kirby-Bauer method). These results were interpreted according to the Clinical Laboratory Standard Institute (CLSI) criteria (Clinical and Laboratory Standards Institute, 2014).

Statistical analysis of the data

We conducted the statistical analysis with the chi-squared test or Fisher’s exact test when appropriate. Differences were considered significant when \(p \) was \(< 0.05\).
The number of *Streptococcus dysgalactiae subsp. equisimilius* isolates tended to increase with each passing year (Figure 1). The number of *Streptococcus dysgalactiae subsp. equisimilius* isolates in 2011 was about two times as same as that in 2009. The number of *Streptococcus dysgalactiae subsp. equisimilius* isolates in both 2012 and 2013 was about four times as same as that in 2009.

The total number of female patients was same as that of males for 5 years (Figure 1). Although the number of male patients was larger than that of female patients in 2011, the number of male patients was smaller than that of female patients in 2012. In short, there was no significant difference between genders in *Streptococcus dysgalactiae subsp. equisimilius*.

The age range was categorized every 10 years old except under one-year in figure 2. The number of 1–10 years patients was largest in this study \(p<0.05 \). The number of 10–60 years patients was low for 5 years. Totally, about Fifty-three percent of *Streptococcus dysgalactiae subsp. equisimilius* were isolated from patients of over 60 years.

The relationship between clinical department and *Streptococcus dysgalactiae subsp. equisimilius* revealed that pediatrics (35.1%) was the most frequent clinical department from five years \(p<0.05 \) (Figure 3). Approximate thirteen percent of *Streptococcus dysgalactiae subsp. equisimilius* were isolated from respiratory medicine and general medicine, respectively.

We also represent that the relationship between biological sources and biological sources of *Streptococcus dysgalactiae subsp. equisimilius* isolated most was sputum (27%) for five years \(p<0.05 \). Twenty-one *Streptococcus dysgalactiae subsp. equisimilius* were isolated from nasal discharge in five years. Approximately nine percent of *Streptococcus dysgalactiae subsp. equisimilius* were isolated from blood, pharyngeal mucus, urine, and tonsil, respectively in five years. Twenty-three *Streptococcus dysgalactiae subsp. equisimilius* (17.1%) were isolated from aseptic site in five years. The number of *Streptococcus dysgalactiae subsp. equisimilius* isolates from nasal discharge tended to increase after 2012.

Finally, we analyzed the antimicrobial susceptibility of *Streptococcus dysgalactiae subsp. equisimilius* in this study. All β-lactam, carbapenem and glycopeptide were susceptible against *Streptococcus dysgalactiae subsp. equisimilius*. However, all aminoglycosides such as amikacin and isepamicin were resistant against *Streptococcus dysgalactiae subsp. equisimilius*. Figure 5(A) showed the susceptibility of clarithromycin against *Streptococcus dysgalactiae subsp. equisimilius*. The highest non-susceptible rate of clarithromycin was about 52% in 2011 and the lowest non-susceptible rate of clarithromycin was about 23% in 2013. The total non-susceptible rate was about 37% for 5 years. Especially, the total resistant rate of clarithromycin was about 20% for 5 years. Figure 5(B) showed the susceptibility of clindamycin against *Streptococcus dysgalactiae subsp. equisimilius*. The highest non-susceptible rate of clindamycin was 30% in 2009 and the lowest non-
susceptible rate of clindamycin was 20% in 2012. The total non-susceptible rate was about 23% for 5 years. Especially, the total resistant rate of clarithromycin was about 19% for 5 years. Figure 5(C) showed the susceptibility of minocycline against Streptococcus dysgalactiae subsp. equisimiliius. The highest non-susceptible rate of minocycline was 40% in 2009 and the lowest non-susceptible rate of minocycline was about 9% in 2013. The total non-susceptible rate was about 25% for 5 years. However, the total resistant rate of minocycline was about 7% for 5 years. Figure 5(D) showed the susceptibility of ciprofloxacin against Streptococcus dysgalactiae subsp. equisimiliius. The highest non-susceptible rate of ciprofloxacin was 81% in 2011 and the lowest non-susceptible rate of ciprofloxacin was about 10% in 2009. The total non-susceptible rate was about 55% for 5 years. However, the total resistant rate of ciprofloxacin was about 12% for 5 years.

Although many previous studies represented the data of only invasive streptococcal diseases (Hashikawa et al., 2004; Brandt and Spellerberg, 2009; Takahashi, 2010a; Takahashi, 2010b), the comprehensive analysis of recent Streptococcus dysgalactiae subsp. equisimiliius in Japanese general hospital have been seldom performed (Sunaoshi, 2010; Ichikawa, 2011). In this study, we described the clinical characteristics and antimicrobial susceptible patterns of all Streptococcus dysgalactiae subsp. equisimiliius isolated from general hospital in Japan among recent 5 years. Although we have little interest of Streptococcus dysgalactiae subsp. equisimiliius as compared with Streptococcus pyogenes and Streptococcus agalactiae before, this study may imply that Streptococcus dysgalactiae subsp. equisimiliius will increase gradually from now on.

With respect to gender group, the number of isolation in female patients was same as that in male patients. This result is almost consistent with previous report (Ichikawa, 2011). We clarified Streptococcus dysgalactiae subsp. equisimiliius with age distribution. Young patients under 10-years frequently caused Streptococcus dysgalactiae subsp. equisimiliius infection. Streptococcus dysgalactiae subsp. equisimiliius was hardly isolated from patients ranging from 20 to 60 years. However, the large numbers of Streptococcus dysgalactiae subsp. equisimiliius were isolated from over 60s-patients. Previous report also showed that elder people were infected with severe Streptococcus dysgalactiae subsp. equisimiliius more often (Takahashi, 2010a; Ichikawa, 2011). Some studies revealed that more Streptococcus dysgalactiae subsp. equisimiliius recently caused invasive infection (Hashikawa et al., 2004; Brandt and Spellerberg, 2009; Takahashi, 2010a; Takahashi, 2010b). This hypothesis may be supported by the fact that 13 (about 10%) Streptococcus dysgalactiae subsp. equisimiliius was isolated from blood sample in our studies. Although we did not confirmed streptococcal toxic shock syndrome cases in this study, the number of streptococcal toxic shock syndrome caused by Streptococcus dysgalactiae subsp. equisimiliius may be increasing. In the analysis of clinical departments, the department where most patients with Streptococcus dysgalactiae subsp. equisimiliius was detected, were pediatrics. Acute pharyngitis and tonsillitis are usually popular as pediatric or otolaryngology diseases. Although Streptococcus pyogenes is the main pathogenic bacteria which cause pharyngitis and tonsillitis (Caparon, 2001) and the number of Streptococcus dysgalactiae subsp. equisimiliius causing pharyngitis and tonsillitis may also be increasing.
Figure 1 Gender distribution of *Streptococcus dysgalactiae subsp. equisimilium*

![Gender distribution of Streptococcus dysgalactiae subsp. equisimilium](image1)

Figure 2 Age distribution of *Streptococcus dysgalactiae subsp. equisimilium*

![Age distribution of Streptococcus dysgalactiae subsp. equisimilium](image2)
Figure. 3 Biological source distribution of *Streptococcus dysgalactiae subsp. equisimilus*

![Biological source distribution of Streptococcus dysgalactiae subsp. equisimilus](image)

Figure. 4 Clinical department distribution of *Streptococcus dysgalactiae subsp. equisimilus*

![Clinical department distribution of Streptococcus dysgalactiae subsp. equisimilus](image)
Figure 5 Antimicrobial susceptibility of *Streptococcus dysgalactiae subsp. equisimilis*.

Except pediatrics, *Streptococcus dysgalactiae subsp. equisimilus* frequently was isolated from respiratory medicine and general medicine. This may be the reason why elder people often consult those departments because of respiratory symptom. Most biological sources of *Streptococcus dysgalactiae subsp. equisimilus* were strongly related with the result of clinical department. Especially, the large number of *Streptococcus dysgalactiae subsp. equisimilus* was obtained from
respiratory system as follows; sputum, nasal discharge, pharyngeal mucus and tonsil in our studies. This result may also support that Streptococcus dysgalactiae subsp. equisimilis possesses the characteristics of air-infectious pathogen. Antimicrobial susceptible analysis of Streptococcus dysgalactiae subsp. equisimilis revealed that fluoroquinolone was no longer significant effective. Because ciprofloxacin non-susceptible rate of Streptococcus dysgalactiae subsp. equisimilis was over 50% in our studies. As fluoroquinolone has been widely used genitourinary disease, digestive disease and respiratory disease (Davis, 1994). We assume that the change of fluoroquinolone resistance among Streptococcus dysgalactiae subsp. equisimilis spread worldwide in future. The total macrolide non-susceptible rate of Streptococcus dysgalactiae subsp. equisimilis was about 40% in our study. Previous report showed that the macrolide non-susceptible rates of Streptococcus dysgalactiae subsp. equisimilis were about 30% (Ichikawa, 2011). Recently clarithromycin and azithromycin have been used frequently against respiratory tract infectious disease and the emergence of macrolide-resistant Streptococcus pneumonia has increased (Ubukata, 2003; Minami, 2014). This fact may apply to Streptococcus dysgalactiae subsp. equisimilis cases from our results. Thus, we need further antimicrobial surveillance to prevent the spread of macrolide resistant Streptococcus dysgalactiae subsp. equisimilis. However, the total lincosamide and tetracycline non-susceptible rate of Streptococcus dysgalactiae subsp. equisimilis ranged from 23 to 25% in our study. Previous report showed that the lincosamide and tetracycline non-susceptible rates of Streptococcus dysgalactiae subsp. equisimilis were about 20% and 50%, respectively (Ichikawa, 2011). Compared to ciprofloxacin and clarithromycin, clindamycin and minocycline may be effective against Streptococcus dysgalactiae subsp. equisimilis for a short while. From these views, we considered the further necessity of the analysis of Streptococcus dysgalactiae subsp. equisimilis strains.

In summary, we clarified the characteristics of Streptococcus dysgalactiae subsp. equisimilis in mid-Japan. Our data suggest that we need pay attention to the emergence of antimicrobial-resistant Streptococcus dysgalactiae subsp. equisimilis hereafter.

Acknowledgment

We thank Mr. Shoji Ishihara, and Ms. Miwako Fujimura for excellent support through this investigation. This study was supported by a grant-in-aid for research from the Nagoya City University, Japan and by grants (No. 23590889) from the Ministry of Education, Science, and Culture of Japan.

References

Facklam, R. 2002. What happened to the

