Original Research Article

Effect of Spirulina platensis and Lactobacillus rhamnosus on growth and biochemical performance of Nile Tilapia((Oreochromis niloticus) fingerlings

Zeinab A. K., Aly, M.S, Faiza A., K., Fatma E. M.*

Microbiology Department, Faculty of Science for Girls, Al-Azhar University Cairo, Egypt
Agric. Biol. Research Division, NRC, Dokki, Giza Microbiology department, Soil, Water and Environment institute, Giza, Egypt
*Corresponding author

ABSTRACT

The present study was carried out to investigate the effects of probiotics and Spirulina on survival, feed conversion ratio (FCR), specific growth rate (SGR), and Blood parameters such as red blood cells (RBCS), white blood cells (WBCS) and hemoglobin (Hb) and Biochemical blood parameters of Nile Tilapia fingerlings (Oreochromis niloticus) for period of 45 days. Probiotic organism (the bacteria Lactobacillus rhamnous) and a single cell protein (Spirulina platensis) were incorporated into diets at concentrations of 2g/kg, 4g/kg, and 6g/kg. The control diet contained no supplement. Spirulina platensis at 6g/kg produced the best and statistically significant weight gain (20.16 g), FCR (3.73) and SGR (0.33). In general, Spirulina platensis produced better growth than Lactobacillus rhamnous. The highest FCR (3.73) was obtained in the control. The present investigation shows that incorporation of a probiotic and Spirulina in diets for Nile Tilapia results in increased growth rate and biochemical performance. Spirulina diets were most effective in stimulating fish growth.

Keywords
Probiotic, Spirulina, Oreochromis niloticus, Growth parameters, Blood biochemical parameters

Introduction

Aquaculture is one of the fast growing systems in the world, which has emerged as an industry possible to supply protein rich food throughout the world (Prasad, 1996). Fish is an important dietary animal protein source in human nutrition. Production of aquatic species through freshwater fisheries and aquaculture for protein supply is being encouraged throughout the world. According to nutritionists, fish is an excellent substitute of protein for red meat. Fish flesh contains all the essential amino acid and minerals viz., iodine, phosphorus, potassium, iron, copper and vitamin A and D in desirable concentrations (Sandhu, 2005).

Presently, aquaculture is facing heavy production loss both in hatcheries and grows out systems due to disease outbreak. In many land animals, growth stimulating microorganisms incorporated in the feed are reported to have beneficial effects. Since, the microorganisms or probiotics are found to have the capability of improving the water quality, their application in
aquaculture has gained momentum. The term “probiotic” which literally means “for life” has since been employed to describe these health-promoting bacteria.

The World Health Organization has defined probiotic bacteria as “live microorganisms which when administered in adequate amounts confer a health benefits” (FAO/WHO, 2001). Probiotics which are beneficially affect the host by improving its intestinal microbial balance, are quickly gaining interest as functional foods in the current era of self-care and complementary medicine. The use of probiotics in the culture of aquatic organisms is increasing with demand for more environment friendly aquaculture practices (Gatesoupe, 1999). Use of probiotics has been proposed as a measure to maintain healthy environment in aquaculture and to prevent occurrence of disease (Lipton, 1998) The microorganisms used as probiotics, including *Lactobacillus*, *Bacillus* and yeasts, have been reported in penaeids and fish (Boonthai et al., 2011).

Spirulina is considered as a rich source of protein, vitamins, minerals, essential amino acids, and fatty acids [gamma-linolenic acid (GLA)], antioxidant pigments such as carotenoids and vitamin E and trace elements (Belay et al., 1996). In addition, it is effective as an immunomodulator (Takeuchi et al., 2002). Several studies have been conducted using dried spirulina as a feed supplement (Watanabe et al., 1990; Ungsethaphand et al., 2010; Ahmadzade-Nia et al., 2011; Mukherjee et al., 2011; Roy et al., 2011).

Materials and Methods

Isolation and mass cultivation of *Spirulina*

Water samples were collected from El-Khadra Lake in Wadi El-Natroun, Beheira, Egypt at different depths of the lake water. Enrichment cultures of *Spirulina* were established from El-Khadra Lake samples on liquid Zarrouk’s medium pH 9 (Pandey et al., 2010) supplemented with antibiotics (nystatin (100 mg/ml) and cycloheximide (100 mg/ml) at 35°C for 20 days and incubated in a growth chamber with light flux of 16:8 h illuminated having 500 Klux at the surface of the vessels. Cultures were manually stirred twice for a few minutes every day. The purity of the culture was ensured by repeated inoculation. The algal isolates was routinely checked by streaking on nutrient broth medium and microscopic observations. The identification was accomplished by determining cellular morphology observed by using light and 16S rRNA sequencing.

Isolation and identification of probiotics bacteria from El-Khadra lake

Isolation of probiotic bacteria

After 30 to 40 hours of incubation at 37°C in anaerobic conditions, various numbers of isolated colonies were obtained on de Man, Rogosa and Sharpe (MRS) agar plates (De Man et al., 1960) from water samples of El-Khadra lake.

Identification of probiotic bacteria

Macroscopic appearance of all the colonies was examined for cultural and morphological characteristics. Bacterial isolates were selected for biochemical test and 16S rRNA sequencing (Mandal et al., 2008; Rouse et al., 2008). Pure cultures were maintained in MRS broth at -20°C with 10% (v/v) glycerol.

Antimicrobial activity assay

Test organisms

The test organisms used in this work included (*Escherichia coli* and *Aeromonas*).
hydrophila) bacteria which were isolated from El-khadra lake. 18 hours incubated peptone broth of clinical isolated cultures \((10^5 -10^6 \text{ cfu/ml})\) of Aeromonas hydrophila and Escherichia coli were used in the antibacterial studies.

Preparation of the algal extracts:

The algal cultures of 10 days old were centrifuged and the pellets were collected weighted and used for extraction of antimicrobial agents. 0.5 g of algal pellets were extracted in 10 ml of the ethanol. The homogenated pellets were then freezeed and thawed three times and centrifuged at 10000 rpm for 10 min. The supernatants were harvested and kept at 4°C till usage.

The inhibitory activity of the Lactobacillus rhamnosus was determined by Agar-well diffusion assays (Schillinger and Lucke, 1989). Crude bacteriocin was prepared by inoculating Lactobacillus rhamnosus (used to screen for bacteriocinogenic potential) in MRS broth (10mL) and incubated at 30°C. After incubation it was centrifuged at 12000 rpm at 4°C for 30 min and supernatant was collected and filtered through 0.45μm pore size filters in order to eliminate any possibility of remaining cell/contamination.

The cell free supernatant was referred as crude bacteriocin preparation (Ogunbanwo et al., 2003). Crude bacteriocin was neutralized by 1N NaOH and final pH was set at 7.

Agar-well diffusion method (Shanmuga et al., 2002)

To determine the antibacterial activity of the algal extract of Spirolina platensis and crude bacteriocin produced by Lactobacillus rhamnosus against the selected fish pathogens. The prepoured nutrient agar plates were overlayed with 100 μl of overnight culture of tested pathogens (in nutrient broth), then spread well with L-shaped glass rod. After 15 min, wells of 5 mm diameter were made with a sterile cork borer, and then 100 μl of supernatant Lactobacillus and the algal extract was added into the well with the help of sterilized micropipette. The plates were kept in an upright position in an incubator until the extracts diffused in the agar at least for 3-4 hr. These plates were then inverted and further incubated at 37°C for 24 hr. The plates were observed for zone of inhibition (mm) around the wells.

Preparation of probiotics for feeding trails

Lactobacillus rhamnosus was grown in an overnight culture at 30°C in 4.0 L MRS broth under shaking (120 rpm). The cells were harvested by centrifugation at 3000 rpm for 15 min, washed 3 times by 0.1 M phosphate buffer solution (PBS) at pH 7.0. The cells were resuspended in the same buffer to give the final concentration 10⁹ CFU/ml. One ml of PBS containing the probiotic was added to the commercial sterilized food to give 10⁹ bacterial cells/ kg fish feed. The probiotic bacteria were added to the surface of the feed via a represented oil suspension (sun flower oil). Diets were dried overnight at room temperature. The moisture content of the feed was eliminated by grinding the feed and drying in an oven at 103°C until constant weight. The results were expressed in percentage of the dry mass content. Diets were transferred to black plastic bags and freeze stored at -20°C.

Experimental plan

Nile Tilapia (*O. niloticus*) fingerlings were brought from a fresh water commercial
farm, Kafr El-Sheikh Governorate, Egypt. Prior to the start of the experiment, fish were kept in a fiberglass tank and randomly distributed into glass aquaria to be adapted to the experimental condition until start of the experiment.

Fish were fed on the control diet for 2 weeks; during this period, healthy fish at the same weight replaced died ones. All the experimental treatments were conducted under an artificial photoperiod equal to natural light/darkness period (12 h light: 12 h darkness).

Experimental diets

Seven diets were formulated containing feed additives for Nile Tilapia fingerlings: one as a control diet without supplements; three diets containing *Lactobacillus rhamnosus* at either a concentration of 1 ml (Lact1), 2 ml (Lact2), or 3 ml (Lact3) /kg diet. The microbe concentrations in the probiotics were 10^9 colony forming units (CFU)/g. Spirulina was supplied with three doses (2g (Sp1), 4g (Sp2), 6g (Sp3)/kg diet). The basal and tested diets were formulated from the commercial feed ingredients.

The dry ingredients were grounded through a feed grinder to a very small size (0.15 mm). Experimental diets were formulated (Table 2) to be isocaloric and isonitrogenous (37.58% crude protein and 230.32kcal GE /100 g diet). The ingredients weight mixed by a dough mixer for 20 min to homogenize the ingredients. The estimated amount of oil components (sunflower oil) was gradually added and the mixing operation was continued for 20 min. The diets were pelleted through fodder machine and the pellets were dried under room temperature. The diets were stored in plastic bags in refrigerator at 4°C for further use during the experimental period.

Experimental design of rearing fish

A total of 420 Nile Tilapia fingerlings with an average initial body weight of about 50g ± 2.3 were randomly divided into seven treatment groups and stocked into 21 glass aquaria (70 L each). Three aquaria were assigned for each treatment. Fresh tap water was stored in fiberglass tanks for 24 h under aeration for dechlorination. One third of all aquaria were replaced daily.

Five air stones were used for aerating the aquaria water. Water temperature ranged between 26 to 28°C. Fish feces and feed residues were removed daily by siphoning. Fish from each replicate were weighted at the start of each experiment and hence was counted and reweight every 2 weeks throughout the experimental period (45days).

Fish in all treatments were daily fed with the experimental diets at a level 3% of the body weight daily. The feed amount was given three times daily in equal proportions for 42 days. Fish were weighed biweekly and feed amounts were adjusted on the basis of the new fish weight.

Sample collection and analyses

At the end of the feeding trial, all fish were bulk-weighed, counted were measured for calculation of weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), feed conversion ratio (FCR).

Analytical methods

Chemical analysis of feed

Proximate chemical analyses were made of diet ingredients and a sample of fish at the beginning and at the end of the experiment according to standard methods (AOAC 1992) for dry matter, crude protein, ether
extract, crude fiber and ash. Gross energy (GE) contents of the experimental diets and fish samples were calculated by using factors of 5.65, 9.45 and 4.22 kcal/g of protein, lipid and carbohydrates, respectively (NRC, 1993)

Chemical analysis of fish

At the end of the experiment a total number of 42 fish, 6 fish from each treatment, 2 fish from each replicate were randomly taken, netted, weighted and immediately kept in polyethylene bags in deep freezer (-180°C) for chemical analysis. Chemical analysis of repetitive samples of soft tissue was conducted to determine dry mater, crude protein, ether extract (fat) and ash content according to AOAC (1992) methods.

Growth parameters

The growth parameters of the Nile Tilapia fingerlings were assessed by taking their body weight at 45 days. The growth performance was assessed using the following formulas:

Weight Gain (WG) = final fish weight (g) – initial fish weight (g).

Weight Gain % (WG %) = Gain of fish (g) x 100/ initial weight of fish (g).

Average daily gain (ADG) = Gain (g) / time (day).

Specific growth rate (SGR %) = 100 X {(In W2 – In W1) / T}

where W2 is the final weight of fish (G), W1 is the initial weight of fish (G), In is natural log and

T is the period in days.

Feed conversion ratio (FCR) = feed intake (g) / Weight gain (g).

Protein efficiency ratio (PER) = Weight gain (g) / Protein intake (g).

Protein productive value (PPV %) = {(Retained protein (g)) / (protein intake (g))} X Protein efficiency ratio (PER) = Weight gain (g) / Protein intake (g).

Protein productive value (PPV %) = {(Retained protein (g)) / (protein intake (g))} X 100

Blood parameters

Blood samples were collected at the end of experiment; fish in each aquarium were weighted and 5 fish were taken randomly for blood sampling. The blood was collected using heparinized syringes from the caudal vein.

Blood samples were centrifuged at 4000 rpm for 20 min to allow separation of plasma which was subjected to determine plasma total protein and albumin (Tietz, 1990); the activity of the liver enzymes (Alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) were determined by the methods of Young (1990). While, globulin concentrations were determined by subtracting the concentration of total protein from albumin concentration.

Red blood cell (RBCs X 10^6 mm) and white blood cells count (WBCsx10^3 mm): were measured on an a bright line Haemocytometer, Hemoglobin concentration was estimated according to the method of Zinkl(1986), Packed cell volume (PCV %): was estimated by the microhaematocrite method described by (Dacie and Lewis, 2006).
Mean cell hemoglobin concentration (MCHC), mean cell hemoglobin (MCH), and mean cell volume (MCV) were calculated using the formulae.

\[
\text{MCHC} \, (\%) = \frac{\text{Hb}}{\text{Ht}} \times 100, \quad \text{MCH} \, (\text{pg}) = \frac{\text{Hb}}{\text{RBC}} \times 10 \\
\text{MCV} \, (\mu^3) = \frac{\text{Ht}}{\text{RBC}} \times 10
\]

Result and Discussion

Arhrospira platensis and Arthrospira maxima were once classified in the genus Spirulina. There is now agreement that are in fact Arthrospira, nevertheless and some what confusing, the older term Spirulina remains in use for historical reasons Komarck and Lund (1990). *Spirulina platensis* and *Lactobacillus rhamnosus* were isolated from water of El-Khadra lake and identified as shown in Figs (1&2).

The *Lactobacillus* isolated from El-khadra lake using MRS as the selective medium was Gram positive, catalase negative and non-spore forming long rods. In 16S rRNA sequencing and phylogenetic analysis, 99% similarity was noted with *Lactobacillus rhamnosus*.

Spirulina is a microscopic blue-green alga in the shape of a spiral coil, living both in sea and fresh water. *Spirulina* is the common name for human and animal food supplements produced primarily from two species of cyanobacteria: *Arthrospira platensis*, and *Arthrospira maxima* (Vonshak and Tomaselli, 2000). Antimicrobially active lipids and active fatty acids are present in a high concentration in this alga (Lampe *et al.*, 1998). It was hypothesised that lipids kill microorganisms by leading to disruption of the cellular membrane (Bergsson, 2005) as well as bacteria, fungi and yeasts because they can penetrate the extensive meshwork of peptidoglycan in the cell wall without visible changes and reach the bacterial membrane leading to its disintegration. This can probably be explained by the strong fabric of the cell wall of Gram-positive bacteria, which maintain their structure in spite of substantial hydrostatic turgor pressure within the bacteria (Bergsson and Thormar, 2002).

Probiotics has been suggested as an option to improve the health and well being of aquatic animals during culture (Verschuere *et al.* 2000; FAO/WHO Working Group Report 2002), and among the benefits of using them, some authors have reported an improve of growth performance of organisms fed with diets added with probiotic cells (Ghosh *et al.* 2008; Panigrahi and Azad 2007).

It is clear from study that the diameter of the inhibition zone depends mainly on the crude extracts used and the tested bacteria. The extract of *Spirulina platensis* showed maximum antimicrobial activity of 2.7 mm against *Escherichia coli* Table (2).

S. platensis is a cyanobacterium that has been largely studied due to its commercial importance as a source of protein, vitamins, essential amino acids, and fatty acids in many countries in tropic, subtropical and temperate regions for use in human health food, as an animal feed. *S. platensis* was grown under optimum growth conditions and the produced dried biomass was used in the following investigation in feed additives as growth promoters in Nile Tilapia fingerlings diets.

Growth performance

Data in Table 3 &4 shows the growth performance and nutrient efficiencies on Nile Tilapia fingerlings fed diets. No significant differences in initial body weight
were found among the different experimental treatments, indicating the accuracy of randomization process between the experimental treatments.

It is clearly shown in (Table 3) that all the tested growth parameters (gain, ADG and SGR) in the diets supplemented with *Spirulina platensis* administered to the fingerlings produced the best growth rate at an optimum concentration of 4 and 6 g/kg. It worth mentioned that the mean value level in the group received 6g/kg is higher in all the tested parameters with significant difference. On the other hand, the group of fish fed with control diet exhibited the lowest final body weight; these results cleared that the optimum dietary level of *S. platensis* for *O. niloticus* is 6 g/kg for 45days to enhance growth performance. Duncan and Klesius (1996) reported that *Spirulina* alga was a good source of protein for animal feed, being containing high amounts of vitamins and minerals, in addition, Nakono et al. (2003) recorded that lack of cellulose from the cellular structure of *Spirulina* render it easily digestible, thus, increase fish appetite, improve feed intake and nutrient digestibility and in turn enhance the health of fish, increasing the ability to fight off infections through the reduction of stress levels. The results in the current study are in accordance with Watanabe et al. (1990) and Takeuchi et al. (2002) who found that feed supplemented with *S. platensis* powder improved the feed conversion ratio and growth rates in striped jack, *Pseudocaranx dentex*. Lu et al. (2002) demonstrated that raw *S. platensis* can be an effective uni-feed for larval tilapia at a feeding rate of 30% (on a dry basis) of body weight. Abdel-Tawwab and Ahmed (2009) recorded that the growth and feed utilization of *O. niloticus* were obtained at 5.0 g fresh culture of *S. platensis* /kg diet.

Results show that, treatments with *Spirulina platensis* and *Lactobacillus rhamnosus* had feed conversion ratios (FCR) significantly lower than those for the control diets. The best conversion ratio (2.33) was recorded for the 6g/kg diet of *Spirulina platensis* treatments. It is proved that lower the feed conversion ratio higher is the quality of the feed as observed in many fresh water fishes where the feed conversion ratio is known to decrease with increasing dietary protein content (Jha et al., 2009). The best FCR values observed with feed additives - supplemented diets suggest that addition of spirulina improved feed utilization. Similar results have been reported for feed additives used in diets for piglets (Gil, 1998). In practical terms, this means that feed additives use can decrease the amount of feed necessary for animal growth which could result in production cost reductions.

In general, fish fed with the diets supplemented with feed additives showed better feeding efficiency than those fed with control diet. The protein efficiency ratio (PER) were significantly higher in the treatments containing 6g/kg diet of *Spirulina platensis* than in *Lactobacillus* and control treatments. The lowest PER, were recorded in the control treatments.

The PER and PPV results indicate that supplementing diets with *Spirulina* significantly improves protein utilization in Tilapia. This contributes to optimizing protein use for growth, a significant quality given that protein is the most expensive feed nutrient. The improvement in the biological value of the supplemented diets in these treatments with high population and low dietary protein demonstrated that spirulina supplements performed more efficiently in stress situations (Ringo and Gatesoupe 1998).
Feed additives supplementation significantly affected whole-fish body composition (Table 5). Fish fed with the control diet had the lowest protein content; however, all feed additives supplementation appeared to improved protein content. Carcass lipid content was also affected by dietary protein content, with the highest values in the control treatment, which were statistically different from the supplemented treatments. The lowest overall lipid content (Ether extract) was recorded with *Spirulina platensis* and *Lactobacillus rhamnosus* treatment.

The lowest lipid content content of fish carcass and ash content were recorded in fish groups fed with diets supplemented with *Spirulina platensis* and *Lactobacillus rhamnosus*. From the nutritional stand point of view, increasing the lipid content and ash content of fish tilapia carcass is not acceptable object. In agreement with the results obtained Kalavathy et al. (2003) reported that the relative abdominal fat pad was significantly reduced with adding *Lactobacillus* culture to broiler chick diet, compared to the control group.

These results suggest that *Spirulina platensis* supplementation plays a role in enhancing feed intake with a subsequent enhancement of fish body composition. The better feed intake in spirulina-supplemented diets may have been due to increase fish appetite resulting in a higher feed intake and therefore improved growth. Moreover, due to the high feed intake and nutrient utilization, the deposited nutrients increased. On the other hand, High protein content in group fed 6g/kg diet spirulina algae diet may be due to spirulina improved fish utilization of protein ratio. these results agreed with Soivio *et al.* (1989) who concluded that the differences in protein content of fish body composition may be related to changes in their synthesis, deposition and difference in growth rates. Abdel-Tawab and Ahmed (2009) recorded that changes in protein and lipid content in fish body could be linked with changes in their synthesis, deposition rate in muscle and/or different growth rate.

Blood parameters of *Oreochromis niloticus* fingerlings

This study was planned to evaluate the effect of *Spirulina* and probiotic on the blood parameters of Nile Tilapia. Concerning the effect of both probiotic and *Spirulina* on the health status of fish. Results in Table(6) showed that, feeding *Spirulina platensis* at levels 6 g/kg diet had significantly higher RBCs, while at level 2 and 4 g/kg diet had significantly higher WBCs. Concerning hemoglobin in fish blood all groups fed on *Spirulina* had higher than control and *lactobacillus* reflecting good nutritional status.

These could be attributed to the fact that, the probiotics used increased the blood parameters values as a result of hemopiotic stimulation (Sarma *et al*., 2003 ; Manohar, 2005 and Rajesh Kumar *et al*., 2006). Similar results obtained by Abdel-Tawab *et al*. (2008a) who stated that 10% Spirulina diet increased RBCs and WBCs counts and their ranges were 2.07 – 2.54 x 10⁶/µL and 3.29 – 4.02 10⁵/µL, respectively 0.05;. The low counts of RBCs and WBCs were obtained at the control diet 1.87 x 10⁶/µL and 3.13 10⁵/µL, respectively.

Biochemical analysis of *Oreochromis niloticus* fingerlings serum:

Results in Table 7 showed that, fish fed with diets containing feed additives exhibited higher protein and globulin values. Also, feed additives supplementation significantly decreased AST and ALT values compared with control.
Biochemical analyses often provide vital information for health assessment and management of cultured fish (Pincus, 1996; Cnaani et al., 2004; Řehulkova et al., 2004). Serum total protein and globulin in all groups fed on different levels of spirulina have higher concentrations than control whereas albumin showed no significant difference between different treatments indicating that spirulina had enhanced immunity and improved health of *O. niloticus*.

The measurement of AST and ALT in plasma is of considerable diagnostic value in fish, as it relates to general nutritional status as well as the integrity of the vascular system and liver function. This result agrees with Abdel-Tawab et al. (2008 b) who investigated the use of commercial baker yeast as a growth and immunity promoter for Nile Tilapia; they found that biochemical parameters were improved in fish fed yeast.

It can be concluded that the addition of 6g/kg diet spirulina in Tilapia fingerlings diets improves animal growth, and mitigates the effects of stress factors. The two tested organisms used in the present study were effective in stimulating fish performance, though *Spirulina platensis* produced the best results, being the most viable option for optimizing growth and feed utilization in intensive Tilapia culture.

Table 1 Composition and analysis of the used basal diets

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish meal</td>
<td>15.00</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>50.00</td>
</tr>
<tr>
<td>Yellow corn</td>
<td>16.50</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>5.00</td>
</tr>
<tr>
<td>Cellulose</td>
<td>12.00</td>
</tr>
<tr>
<td>Vitamin and Mineral mixture*</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Calculated analysis (on dry matter basis) %:

<table>
<thead>
<tr>
<th>Nutritive value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>97.97</td>
</tr>
<tr>
<td>Crude protein</td>
<td>37.58</td>
</tr>
<tr>
<td>Ether extract</td>
<td>30.49</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>8.10</td>
</tr>
<tr>
<td>Ash</td>
<td>27.90</td>
</tr>
<tr>
<td>Nitrogen free extract (NFE)</td>
<td>3.48</td>
</tr>
</tbody>
</table>

Vitamins and mineral mixture: Each 1 kg contains vitamin A, 4.8 ml. U; vitamin D, 0.8 ml. U.; vitamin E, 0.4 g; vitamin K, 0.8 g; vitamin B1, 0.49 g; vitamin B2, 1.6 g; vitamin B6, 0.6 g; vitamin B 12, 0.4 g; Pantothenic acid 4 g; Folic acid 400 mg; Biotin 20 mg; Choline chloride 200 mg; Copper 0.4 g; Iodine 0.4 g; Iron 12 mg; Manganese 22 g; Zinc 22 g and Selenium 0.04 g.

Gross energy** the value was calculated from their chemical composition using the factors 5.65, 9.45, 4.22 (K cal/g) for protein, fat, fiber and NFE, respectively (NRC, 1993)
Table 2 antibacterial activity of Spirulina platensis and Lactobacillus rhamnosus (mm)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Diameter of clear zone (mm)</th>
<th>pathogens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Spirulina platensis</td>
<td>2.1</td>
<td>2.70</td>
</tr>
<tr>
<td>Lactobacillus rhamnosus</td>
<td>1.6</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Table 3 Growth performance of Nile tilapia (Oreochromis niloticus) fed diet containing Spirulina platensis and Lactobacillus rhamnosus

<table>
<thead>
<tr>
<th>Items</th>
<th>Initial body weight (g)</th>
<th>Final body weight (g)</th>
<th>Average daily gain (g/fish/day)</th>
<th>Weight gain (g)</th>
<th>Specific growth rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>51.03</td>
<td>62.37D</td>
<td>0.27D</td>
<td>11.34D</td>
<td>0.22C</td>
</tr>
<tr>
<td>Lact 1</td>
<td>50.66</td>
<td>66.34BC</td>
<td>0.37BC</td>
<td>15.67BC</td>
<td>0.27ABC</td>
</tr>
<tr>
<td>Lact 2</td>
<td>50.66</td>
<td>63.95CD</td>
<td>0.32CD</td>
<td>13.29CD</td>
<td>0.25BC</td>
</tr>
<tr>
<td>Lact 3</td>
<td>50.3</td>
<td>64.29CD</td>
<td>0.33CD</td>
<td>14.00CD</td>
<td>0.26ABC</td>
</tr>
<tr>
<td>SP1</td>
<td>51.10</td>
<td>66.93BC</td>
<td>0.37BC</td>
<td>15.83BC</td>
<td>0.28ABC</td>
</tr>
<tr>
<td>SP2</td>
<td>50.13</td>
<td>68.57AB</td>
<td>0.44AB</td>
<td>18.43AB</td>
<td>0.32AB</td>
</tr>
<tr>
<td>SP3</td>
<td>51.50</td>
<td>71.66A</td>
<td>0.48A</td>
<td>20.16A</td>
<td>0.33A</td>
</tr>
<tr>
<td>F test</td>
<td>n.s</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>LSD 1%</td>
<td>-</td>
<td>3.31</td>
<td>0.079</td>
<td>2.93</td>
<td>0.079</td>
</tr>
</tbody>
</table>

* = significant *** = Highly significant n.s= Non significant

Table 4 Feed intake, feed conversion ratio and nutrient utilization of Nile tilapia (Oreochromis niloticus) fed diet containing Spirulina platensis and Lactobacillus rhamnosus

<table>
<thead>
<tr>
<th>Items</th>
<th>Feed conversion ratio</th>
<th>Total gain (g)</th>
<th>Feed intake (g)</th>
<th>Protein efficiency ratio</th>
<th>Protein productive value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.73 A</td>
<td>11.34D</td>
<td>41.74BC</td>
<td>1.83D</td>
<td>27.32E</td>
</tr>
<tr>
<td>Lact 1</td>
<td>3.23AB</td>
<td>15.67BC</td>
<td>50.65A</td>
<td>2.00CD</td>
<td>30.95D</td>
</tr>
<tr>
<td>Lact 2</td>
<td>2.97BC</td>
<td>13.29CD</td>
<td>39.43BC</td>
<td>2.01BCD</td>
<td>33.82CD</td>
</tr>
<tr>
<td>Lact 3</td>
<td>2.72BCD</td>
<td>14.00CD</td>
<td>38.02C</td>
<td>2.26ABC</td>
<td>36.80BC</td>
</tr>
<tr>
<td>SP1</td>
<td>2.84BC</td>
<td>15.83BC</td>
<td>45.00ABC</td>
<td>2.10BC</td>
<td>36.48BC</td>
</tr>
<tr>
<td>SP2</td>
<td>2.16D</td>
<td>18.43AB</td>
<td>46.26AB</td>
<td>2.29AB</td>
<td>38.49B</td>
</tr>
<tr>
<td>SP3</td>
<td>2.33CD</td>
<td>20.16A</td>
<td>47.24AB</td>
<td>2.46A</td>
<td>42.90A</td>
</tr>
<tr>
<td>F test</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>LSD 1%</td>
<td>0.645</td>
<td>2.839</td>
<td>7.951</td>
<td>0.261</td>
<td>3.505</td>
</tr>
</tbody>
</table>

Body composition of Oreochromis niloticus fingerlings
Table 5: Carcass chemical composition of Nile tilapia (O. niloticus) fed diet containing Spirulina platensis and Lactobacillus rhamnosus

<table>
<thead>
<tr>
<th>Chemical Composition</th>
<th>Treatments</th>
<th>Dry Matter (%)</th>
<th>Crude Protein (%)</th>
<th>Lipid Content (%)</th>
<th>Ash (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>24.02D</td>
<td>62.07F</td>
<td>22.13A</td>
<td>13.13BC</td>
<td></td>
</tr>
<tr>
<td>Lact 1</td>
<td>24.36CD</td>
<td>63.21E</td>
<td>20.41B</td>
<td>15.38AB</td>
<td></td>
</tr>
<tr>
<td>Lact 2</td>
<td>25.27BC</td>
<td>64.12D</td>
<td>18.66C</td>
<td>15.22ABC</td>
<td></td>
</tr>
<tr>
<td>Lact 3</td>
<td>25.16BC</td>
<td>64.68CD</td>
<td>17.79CD</td>
<td>16.20A</td>
<td></td>
</tr>
<tr>
<td>SP1</td>
<td>25.84AB</td>
<td>64.92BC</td>
<td>17.17D</td>
<td>16.53A</td>
<td></td>
</tr>
<tr>
<td>SP2</td>
<td>25.65AB</td>
<td>65.52B</td>
<td>17.43D</td>
<td>15.72A</td>
<td></td>
</tr>
<tr>
<td>SP3</td>
<td>26.25A</td>
<td>66.40A</td>
<td>18.75C</td>
<td>12.85C</td>
<td></td>
</tr>
<tr>
<td>F Test</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>LSD 1%</td>
<td>0.939</td>
<td>0.669</td>
<td>0.972</td>
<td>0.0788</td>
<td></td>
</tr>
</tbody>
</table>

* = significant *** = Highly significant

Table 6: Hematological parameters of Nile tilapia (Oreochromis niloticus) fed diet containing Spirulina platensis and Lactobacillus rhamnosus

<table>
<thead>
<tr>
<th>Treatment</th>
<th>RBCS (10^6/mm)</th>
<th>WBCS (10^6/mm)</th>
<th>PCV%</th>
<th>MCV%</th>
<th>MCH%</th>
<th>MCHC%</th>
<th>Hb (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.50F</td>
<td>55.30G</td>
<td>16.66G</td>
<td>113.23C</td>
<td>44.67F</td>
<td>39.40A</td>
<td>6.70F</td>
</tr>
<tr>
<td>Lact 1</td>
<td>1.87E</td>
<td>63.23E</td>
<td>25.13F</td>
<td>126.49B</td>
<td>47.37E</td>
<td>28.11D</td>
<td>9.03E</td>
</tr>
<tr>
<td>Lact 2</td>
<td>1.92DE</td>
<td>63.46D</td>
<td>26.067E</td>
<td>134.95AB</td>
<td>47.83D</td>
<td>28.38C</td>
<td>9.23D</td>
</tr>
<tr>
<td>Lact 3</td>
<td>1.98CD</td>
<td>64.20B</td>
<td>28.67D</td>
<td>141.93A</td>
<td>47.50E</td>
<td>30.47B</td>
<td>9.37D</td>
</tr>
<tr>
<td>SP1</td>
<td>2.200B</td>
<td>66.70A</td>
<td>33.37B</td>
<td>145.05A</td>
<td>50.30C</td>
<td>27.50F</td>
<td>12.23B</td>
</tr>
<tr>
<td>SP2</td>
<td>2.07C</td>
<td>63.77C</td>
<td>29.77C</td>
<td>143.03A</td>
<td>51.87B</td>
<td>27.34E</td>
<td>10.87C</td>
</tr>
<tr>
<td>SP3</td>
<td>2.41A</td>
<td>62.80F</td>
<td>34.03A</td>
<td>141.40A</td>
<td>52.33A</td>
<td>27.13F</td>
<td>12.50A</td>
</tr>
<tr>
<td>F Test</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>LSD 1%</td>
<td>0.111</td>
<td>0.193</td>
<td>0.541</td>
<td>11.52</td>
<td>0.208</td>
<td>0.208</td>
<td>0.193</td>
</tr>
</tbody>
</table>

Figure 1: Phylogenetic dendrogram showing taxonomic positions of Spirulina platensis (Arthrospira platensis) type strains based on the 16s rRNA partial sequences
Table 7 Protein profile and activities of serum enzymes in *Oreochromis niloticus* fed diet containing *Spirulina platensis* and *Lactobacillus rhamnosus*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Kidney enzymes</th>
<th>Immunity index</th>
<th>Liver enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea (g/l)</td>
<td>creatinin (g/l)</td>
<td>Total protein (g/l)</td>
</tr>
<tr>
<td>Control</td>
<td>2.40A</td>
<td>1.37A</td>
<td>4.26E</td>
</tr>
<tr>
<td>Lact 1</td>
<td>2.23AB</td>
<td>0.73BC</td>
<td>4.80D</td>
</tr>
<tr>
<td>Lact 2</td>
<td>2.13BC</td>
<td>0.80BC</td>
<td>4.76D</td>
</tr>
<tr>
<td>Lact 3</td>
<td>2.10BC</td>
<td>0.43C</td>
<td>5.00C</td>
</tr>
<tr>
<td>SP1</td>
<td>1.96CD</td>
<td>0.76BC</td>
<td>5.14B</td>
</tr>
<tr>
<td>SP2</td>
<td>1.83D</td>
<td>0.90B</td>
<td>5.46B</td>
</tr>
<tr>
<td>SP3</td>
<td>1.83D</td>
<td>0.93B</td>
<td>5.63A</td>
</tr>
<tr>
<td>F test</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>LSD 1%</td>
<td>0.193</td>
<td>0.402</td>
<td>0.176</td>
</tr>
</tbody>
</table>

* = significant *** = Highly significant

Figure 2 Phylogenetic dendrogram showing taxonomic positions of *Lactobacillus rhamnous* type strains based on the 16s rRNA partial sequences
Fig. 3 Hemoglobien concentrations, Protein profile and activities of serum enzymes in Oreochromis niloticus fed diet containing Spirulina platensis and Lactobacillus rhamnosus

References

