Original Research Article

Carbapenem sparing options for the treatment of ESBL and AmpC producing Enterobacteriaceae in hemodynamically stable patients – an in vitro study

S. Amreliwala, S. Durgad and A. Poojary*

Department of Pathology and Microbiology, Breach Candy Hospital Trust, Mumbai, India

*Corresponding author

ABSTRACT

Infections due to multidrug resistant (MDR) Enterobacteriaceae pose a major therapeutic challenge. ESBL and AmpC enzymes are two of the most common enzymes encountered. The dry antibiotic pipeline mandates antibiotics like Carbapenems to be reserved for critically ill, hemodynamically unstable patients. This in-vitro prospective study looked into options that would be carbapenem sparing, for treatment of MDR gram negative Enterobacteriaceae in hemodynamically stable patients. Multidrug resistant (MDR) Enterobacteriaceae isolated from various clinical samples except blood culture were studied. ESBLs were identified by the Clinical Laboratory Standards Institute (CLSI) criteria. AmpC were identified using the boronic acid inhibition method. Kirby Bauer disc diffusion methods was used to determine the antibiotic susceptibility to test the following bactericidal antimicrobial agents: Cefepime (FEP), Cefoperazone/Sulbactum (CFS), Piperacillin/Tazobactum (TZP), Cefepime/Tazobactum (CPT), Amikacin (AK), Gentamicin (GM) and Levofloxacin (LVX). Out of 400 MDR isolates studied, 210 (52.5%) were ESBL producers, 89 (22.25%) were AmpC producers, and 101 (25.25%) produced both types of enzymes. Among the MDR Enterobacteriaceae, the susceptibility observed was as follows: CPT 88%, AK 76%, CFS 66%, TZP 55%, GM 51%, FEP 49%, and LVX 17%. CPT, AK & CFS can empirically serve as carbapenem sparing agents in the treatment of infections other than blood stream infections, in hemodynamically stable patients.

Keywords

MDR-GNB, BL-BLIs, Carbapenem sparing, Hemodynamically stable

Introduction

In India, multi drug resistant (MDR) Enterobacteriaceae continue to be an important cause of infections both in the community and in healthcare settings. [1,2] Resistance is commonly encountered to Betalactam antibiotics, mediated by a diverse group of enzymes called as Betalactamases. Betalactamses have been classified according to their genetic make up into 4 classes namely: Class A, B, C & D based on the Ambler’s Molecular classification [3]. ESBLs belong to group A, comprising of >150 enzymes and are widely produced by Enterobacteriaceae. [4,5,6]
These enzymes can hydrolyze penicillins, cephalosporins of the 1st, 2nd & 3rd generation like ceftazidime and cefotaxime, & also monobactams. They are usually encoded by plasmids which carry resistance genes to other group of antibiotics like the quinolones and aminoglycosides.[4] ESBLs are inhibited by beta-lactamase inhibitors like tazobactum, sulbactum & clavulanic acid.[4] AmpC β-lactamases, on the other hand, belong to class C of Ambler’s molecular classification and hydrolyze penicillins, cephalosporins and monobactams except the fourth generation cephalosporins.[7] Amp C are not inhibited by beta lactamase inhibitors. AmpCs are encoded on chromosomes as well as plasmids. [8]

While carbapenems are active against both ESBL and AmpC producers, they are best reserved for critically ill patients. The dry antibiotic pipeline particularly against gram negative bacteria has forced us to look into opportunities for improving usage of the existing antimicrobial agents, particularly in patients who are hemodynamically stable. [9] The aim of our study was to analyze the antibiotic susceptibility pattern of MDR Enterobactericeae producing ESBL, AmpC or both to bactericidal antimicrobial agents like Beta lactam /Beta lactamase (BL-BLI) inhibitor combinations, Fluoroquinolones and aminoglycosides.

**Materials and Methods**

This was a prospective study in which, 400 MDR Enterobactericeae producing ESBL, AmpC or both, isolated consecutively from non repetitive clinical specimens, except blood cultures were included over two years of the study period (June 2011 to May 2013). The anatomical sites of isolation were as follows: urine(310), wound swab (45) ,intra abdominal sites(25) ,sputum(15) and vaginal swab(5) . The isolates comprised of E.coli(328), K.pneumoniae(48), M.morganii(10) E.cloacae (8) E.aerogenes (3) Serratia marcesans (1) C.freundii(1) and P.mirabilis (1) . The identification was performed using conventional biochemical methods.

**Antimicrobial susceptibility testing (AST):** AST and interpretation was performed using the Kirby Bauer disc diffusion method on Mueller Hinton agar plates with 0.5 Mcfarland density suspension as per CLSI guidelines. [10]. The antibiotic discs(µg) used were follows: cefepime (30 µg) , cefoperazone sulbactam(75/30 µg), piperacillin tazobactam(100/10 µg), cefepime tazobactam(30/10 µg), amikacin(30 µg), gentamicin(30 µg) and levofloxacin(5 µg) (Becton Dickinson Pvt India Ltd.) . Reference strains included in the study were as follows: ESBL positive Klebsiella pneumoniae ATCC 700603, ESBL negative Escherichia coli ATCC 25922.

**ESBL detection:** All isolates that were resistant to Cefotaxime and Ceftazidime were confirmed for ESBL detection. The tests were performed as per the Clinical Laboratory Standard Institute recommendations as follows: [10].

**Initial screen test for ESBL:** The test inoculum (0.5 McFarland’s turbidity) was spread onto Mueller-Hinton agar (MHA) using a sterile cotton swab. A disc of cefotaxime (30 µg) and ceftazidime (30 µg) were kept placed on the agar surface in addition to the other antimicrobial agents. The plate was incubated at 37°C overnight. The zone diameter of <=27mm & <=22mm for Cefotaxime & Ceftazidime respectively indicated that the isolate may produce ESBL. This was further confirmed by the phenotypic confirmatory test.
Phenotypic disc confirmatory test (PDCT): The test inoculum (0.5 McFarland’s turbidity) was spread onto the MHA using a sterile cotton swab; a cefotaxime (30 μg) disc containing of the antibiotic and a cefotaxime-clavulanic acid disc were placed 16 to 20 mm apart. The plate was incubated at 37°C overnight. A zone enhancement of >=5 mm with the inhibitor containing disc compared to cefotaxime alone confirmed the presence of ESBLs. (Fig 1)

**AmpC Detection:** Since the CLSI has not recommended a testing methodology for AmpC enzymes, the phenotypic AmpC detection method used was as follows:

All cefoxitin resistant isolates were tested by an Inhibitor based method using boronic to identify AmpC producers. To prepare the combination disk, 120 mg phenyl boronic acid was added to 3ml Dimethyl sulfoxide (DMSO). DMSO - boronic acid solution was diluted with an equal volume of sterile distilled water (D/W), and 20μl of this solution was added to cefotaxime disks. Discs of cefotaxime (30 μg) alone and that in combination with boronic acid were then placed on a lawn culture of the isolate on MHA at a distance of 15 to 20 mm apart. The plate was incubated at 37°C overnight. Increase in zone diameter of >5mm with the inhibitor containing disc compared to cefotaxime alone were categorized as AmpC producers. [11] Fig 2

**Result and Discussion**

In our study, 57% of the MDR Enterobacteriaceae were from outpatient specimens, 38% from wards and 5% from the intensive care units. (Fig 3) Urine was the most common specimen (77%) to grow MDR GNBs, followed by wound swabs (9%), Intra-abdominal specimens (6%), Sputum (3%) & vaginal swab (1%). (Fig 4) E.coli (81.7%) & Klebsiella pneumoniae (12%) were the common organisms found in the study. The remaining 2.5 % was comprised of Morganella morganii, Enterobacter species (3.5%), Serratia marcesans (0.25%), Citrobacter freundii (0.25%) and Proteus mirabilis (0.25%) (Fig 5) Approximately, 52.5% of the isolates included in the study were ESBL producers, 25.25% were ESBL + AmpC co-producers & 22.25% were only AmpC producers (Table 1).

Cefipime/Tazobactum had the best overall susceptibility against all the MDR isolates (88%), followed by Amikacin 76% , Cefoperzone/Sublactum 66% and Piperacillin/ Tazobactum 53%. Levofloxacin was susceptible in only 17% of the MDR isolates suggesting Fluoroquinolones to be unreliable in the treatment of infections caused by MDR GNBs. (Fig6) ESBL producers showed sensitivity to CPT(84.6%), AK(69.2%) and CFS(59.75%) in that order. AmpC producers showed sensitivity to CPT(88.5%) and AK(88.5%) followed by FEP(86.5%) in that order . The co-producers showed sensitivity to CPT(93%), CFS(85%), and AK(77.4%) in that order. The overall susceptibility of the MDR Enterobactericeae strains were as follows: CPT(88%), AK(76%) and CFS(66%) (Table 2).

Antimicrobial resistance increases the morbidity, mortality and costs of treating infectious diseases. (12) What is alarming is the increasing isolation of these bacteria from outpatient specimens. While 57% of the MDR isolates in our study were from outpatient specimens , data from both India and globally also suggest an increasing trend in MDR GNB isolation from the community [2,9,13,14].
ESBLs were first described in 1983, and have the ability to hydrolyse oxyimino-cephalosporins, and monobactams, but not cephemycins or carbapenems. [4,15] There are more than 500 different ESBLs described all of which are mutations of the classical broad-spectrum beta lactamase enzymes that were initially named TEM and SHV (TEM-1, TEM-2, SHV-1). CTX-M 15 is the most common variety found in India [16]. In our study, about 52.5% of the MDR isolates were pure ESBL producers. While in India, the ESBL prevalence ranges from 60 to 70%, in our study 52.5% of our MDR isolates were pure ESBL producers. [17,18] Out of the 229 outpatient clinical specimens, 50.2% were ESBL producers. This conforms with other studies from India suggesting that the ESBL carriage in the community can be anywhere between 20% to 53%.[ 14, 19,20,21] E.coli and K.pneumonaie are the two most common isolates ESBL producing uropathogens [21]In our study too, 82% of ESBL producers were E.coli followed by 17% of K.pneumonaie. ESBL producers showed highest susceptibility to CPT(84.6%) , AK(69.2%) and CFS(59.75%) . Cefepime, gentamicin, levofloxacin and piperclillin tazobactum may not be as reliable choices for treating infections due to ESBL producing bacteria as they show <50% susceptibility. Other studies have also pointed out resistance to quinolones and gentamicin among ESBL producers [22] 

AmpC beta-lactamases differ from ESBL’s in that they are cephalosporinases and are resistant to beta-lactamase inhibitors. They hydrolyze the cephamycins, but not the 4th generation cephalosporins (eg. cefepime) [7] Genes for AmpC β-lactamases can be found both on the chromosomes as well as on plasmids of Enterobactericiaea. Plasmid mediated AmpC have arisen by transfer of chromosomal genes on to plasmids and are inducible. [23] They can be found in E. coli, Klebsiella pneumoniae, Salmonella species, Citrobacter freundii, Enterobacter aerogenes and Proteus mirabilis. The plasmid mediated AmpC beta lactamases are more dangerous because they can jump across species to confer drug resistance among different species of Enterobactericiaea. [24] 

In our study, pure AmpC production was seen in 22.25% of the MDR Enterobactericiaea isolates. Studies from different parts of India suggest that the prevalence of AmpC among MDR Enterobactericiaea can be anywhere between 5% to 25%. [12,22,25,26] Amikacin (88.5%), Cefipime/Tazobactum(88.5%), Cefipime (86.5%) and Gentamicin (81.25%) showed best susceptibility towards AmpC producers in this study. Piperclillin /Tazobactum (41.67%), Cefoperazone /Sublactum (50.7%) , Levofloxacin (32.3%) showed <= 50% susceptibility for AmpC producers. Similar patterns of susceptibility are seen in other Indian studies [22,25] 

Approximately 25% of the isolates in our study were co-producers of ESBL & AmpC betalactamases. Such co-producing complex phenotypes are being increasing reported worldwide [27,28]. Other studies from India have also shown that ESBL production among AmpC producing MDR GNB can range from 25% to 92% [25,29 ]. For co-producers, our study showed the following susceptibilities :Cefipime /Tazobactum (93%), Cefoperazone /Sublactum (85.4%), Amikacin (77.4%), and Piperacillin/Tazobactum (72.17%) which could be carbapenam sparing options. The carbapenems are considered to be antibiotics of last resort to combat serious infections caused by multidrug resistant bacteria, especially in ICUs and high risk
wards housing critically ill patients. A dry antibiotic pipeline particularly for Gram negative bacilli mandates that we choose carbapenem sparing regimens in less serious infections. [30]

This study suggests that Betalactam plus betalactamase combinations like Cefipime /Tazobactum, Cefoperazone /Sulbactum, Piperacillin /Tazobactum and aminoglycosides like Amikacin may be useful carbapenam sparing antibiotics in the Indian scenario where infections due to gram negative multidrug resistant organisms pose a major problem both in the hospital as well as in the community. Clinical studies need to be conducted to understand the extent to which the above carbapenam sparing therapies will be useful.

**Table.1** Distribution of ESBL, AMPC and ESBL +AMPC co-producers

<table>
<thead>
<tr>
<th>Organisms (Nos.)</th>
<th>ESBL (%)</th>
<th>AMPC(%)</th>
<th>ESBL +AMPC(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoli (328)</td>
<td>172 (82)</td>
<td>68 (77)</td>
<td>88(87)</td>
</tr>
<tr>
<td>Kpn (48)</td>
<td>36(17)</td>
<td>2(2)</td>
<td>10(10)</td>
</tr>
<tr>
<td>M.morganii (10)</td>
<td>-</td>
<td>9(10)</td>
<td>1(1)</td>
</tr>
<tr>
<td>E.cloacae (8)</td>
<td>2(1)</td>
<td>5(6)</td>
<td>1(1)</td>
</tr>
<tr>
<td>E.aerogenes (3)</td>
<td>-</td>
<td>2(2)</td>
<td>1(1)</td>
</tr>
<tr>
<td>Serratia (1)</td>
<td>-</td>
<td>1(1)</td>
<td>-</td>
</tr>
<tr>
<td>C.freundii (1)</td>
<td>-</td>
<td>1(1)</td>
<td>-</td>
</tr>
<tr>
<td>P.mirabilis (1)</td>
<td>-</td>
<td>1(1)</td>
<td>-</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>210 (52.5%)</td>
<td>89(22.25%)</td>
<td>101(25.25%)</td>
</tr>
</tbody>
</table>

**Table.2** Susceptibility pattern for ESBL, AmpC & Co-producers

<table>
<thead>
<tr>
<th>Antimicrobial agents</th>
<th>ESBL</th>
<th>AmpC</th>
<th>ESBL+AmpC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefepime</td>
<td>33</td>
<td>86.5</td>
<td>49.5</td>
</tr>
<tr>
<td>Cefepime + Tazobactum</td>
<td>84.6</td>
<td>88.5</td>
<td>93</td>
</tr>
<tr>
<td>Piperacillin + Tazobactum</td>
<td>48</td>
<td>41.67</td>
<td>72.17</td>
</tr>
<tr>
<td>Ceforperazone + Sulbactum</td>
<td>59.75</td>
<td>50.7</td>
<td>85.4</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>11.75</td>
<td>32.3</td>
<td>14.8</td>
</tr>
<tr>
<td>Amikacin</td>
<td>69.2</td>
<td>88.5</td>
<td>77.4</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>39.3</td>
<td>81.25</td>
<td>48.7</td>
</tr>
</tbody>
</table>
Fig.1 Difference between CTX and CTX/CLA >5mm-an ESBL producer

![Image of bacterial growth on agar plate](image1.jpg)

Fig.2 Difference between CTX and CTX/BA >5mm- an AmpC producer

![Pie chart showing distribution of isolates](image2.png)

Fig.4 Distribution of the isolates according to the anatomic sites

![Pie chart showing distribution of isolates](image3.png)
Fig. 5 Species of MDR gram negative organisms

![Graph showing species of MDR gram negative organisms]

Fig. 6 The overall percentage susceptibility of the MDR isolates

![Graph showing percentage susceptibility of MDR isolates]

FEP – Cefepime, CPT – Cefepime/Tazobactam, TZP – Piperacillin/Tazobactam, CFS – Cefoperazone/Sulbactam, LVX – Levofloxacin, AK – Amikacin, GM – Gentamicin

Acknowledgement

Astra Zeneca India Pvt. Ltd for supporting a part of this study.

References

1) BN Chaudhari, CR Rodrigues, V Balaji, R Iyer, U Sekar, C Wattal, DS Chitnis, TN Dhole, S Joshi. Incidence of ESBL producers amongst gram negative bacilli isolated from Intra-abdominal infections across India (Based on the smart study, 2007 Data) Poster GN 103 presented at IsAAR 2009


9) M. Trivedi, V Patel, R Soman, C Rodriguez, T Singhal. The Outcome of Treating ESBL Infections with Carbapenems vs. Non Carbapenem Antimicrobials J Assoc Physicians India 2012; 60 (8) : 28-30

10) CLSI. The performance standards for the antimicrobial disc susceptibility tests. CLSI; Wayne PA; 2012; M100-S22


causing neonatal sepsis in India in rural and urban settings J Med Microbiol 2011; 60( 4 ) : 500-507


22) N Grover , A.K. Sahni , S. Bhattacharya. Therapeutic challenges of ESBLs and AmpC beta-lactamase producers in a tertiary care centre Medical Journal Armed Forces India 2013;69 : 4-10


