Original Research Article

Anthelmintic effect of *Trigonella foenum-graecum* on tegument of *Gastrothylax crumenifer* in cattle of Udaipur, India

G.Swarnakar¹*, K.Roat¹, B.Sanger¹ and A. Kumawat²

Department of Zoology, Government P.G. Meera Girls College, MLS University, Udaipur-313001, India

²PAHER University, Udaipur-313001, India

*Corresponding author

A B S T R A C T

The prevalence of amphistome parasites is very high in domestic ruminants and spread all over the world, which cause the disease paramphistomiasis. *Trigonella foenum-graecum* is commonly known as methi and Fenugreek. The leaves and seeds of fenugreek are known for their medicinal value. The present study was considered to evaluate in vitro efficacy of medicinal plant aqueous extract of *Trigonella foenum-graecum* on *Gastrothylax crumenifer*. 130 mg/ml concentration of aqueous extract gave total mortality at 5 hours. The morphology of control *Gastrothylax crumenifer* was compared with treated animal by light microscopy. *Gastrothylax crumenifer* were treated with *Trigonella foenum-graecum* aqueous extract. *Gastrothylax crumenifer* were showed detachment, discontinuation and blebbing in tegument surface, rupture the parenchyma cells, tegument cells and also observed damaged the musculature cells in sucker. Various veterinary drugs have been used to eliminate parasites from ruminant but these drugs are unaffordable and inaccessible for poor cattle farmers. So the study indicated the possible for developing herbal anthelmintic drug to control *Gastrothylax crumenifer*.

Keywords

Anthelmintic, *Trigonella foenum-graecum*, cattle, amphistome, *Gastrothylax crumenifer*, and tegument

Introduction

The state of Rajasthan is known for cattle wealth. Gastrointestinal parasites infection is one of the major problems in worldwide and causes mortality, morbidity in cattle and economic losses to poor farmers (Perry and Randolph, 1999).

The prevalence of amphistome parasites is very high in domestic ruminants, which cause the disease paramphistomiasis (Qadir *et al.*, 2010 and Swarnakar & Kumawat, 2013). This disease causes reduces production of milk, meat, skin and loss of life of cattle.

Many scientists have been used various medicinal plants to control helminth parasites in different animals (Veerakumari and Munuswamy, 1999; Bashter *et al.*, 2011; Challam *et al.*, 2010; Maharshi *et al.*, 2011; Mohammed & Sulaiman, 2013).
Trigonella foenum-graecum is commonly known as methi and Fenugreek (Amri et al., 2009). Trigonella foenum-graecum is cultivated in India, Pakistan, China and few other countries and well known medicinal plant having properties of reducing blood sugar level, anthelmintic, antiociceptive, antipyretic, antimicrobial and antifertility in human and animals (Ghafghazi et al., 1980-81; Laroubi et al., 2009; Bhalke et al., 2009; Ahirwar et al., 2010; Khadse and Kakde 2010; Zaen Al-abdeen et al., 2010; Chandra et al., 2011 and Alam et al., 2014). Various veterinary drugs have been used to eliminate parasites from ruminant but these drugs are unaffordable and inaccessible for poor cattle farmers. Herbal drugs of medicinal plants are safer, cheaper and ecofriendly way for poor farmers.

Little research work has been observed on extract of medicinal and indigenous plants tested against different species of amphistome (Tandon, et al., 1997; Nahla et al., 2012; Veerakumari et al., 2012 and Usha et al., 2013). Anthelmintic activity and paralytic effect have shown against G. explanatum (Singh et al., 2008).

However, no research work has been carried out so far to study the effects of Trigonella foenum-graecum extracts of indigenous plant on amphistome, Gastrothylax crumenifer by light microscope.

There is an urgent need to develop a new, ecofriendly drug to control amphistome infection in cattle. Therefore, it has been decided to undertake the work on “Anthelmintic effect of Trigonella foenum-graecum on tegument of Gastrothylax crumenifer in cattle of Udaipur”.

Materials and Methods

Collection of parasites

The Gastrothylax crumenifer were collected from the rumen of freshly slaughtered buffaloes (Bubalus bubalis) at the local zoo abattoir in Udaipur. After thorough washing with physiological saline solution (0.7 percent, NaCl) they were divided into three groups. First group of worm were used for identification of species of amphistomes, with the help of whole mount preparation of amphistomes (Dutt, 1980). Second group of the Gastrothylax crumenifer were given in vitro treatment of aqueous extract of Trigonella foenum-graecum at various concentration and in vitro treated Gastrothylax crumenifer were fixed in Bouin’s fixative for histological studies by light microscope. Third group of Gastrothylax crumenifer were used as untreated or control amphistomes

Plant collection

Fresh seeds of Trigonella foenum-graecum were collected from Udaipur areas for their anthelmintic activity against the amphistomes Gastrothylax crumenifer of cattle.
Preparation of plant extract:

Seeds of *Trigonella foenum-graecum* were washed with tap water and distilled water then they were kept in dry in oven at 40 °C for 3-4 days for material become completely solid and dry. The dried Seeds of *Trigonella foenum-graecum* were homogenized to fine powder with the help of an electric blender and store in the dark at room temperature in close containers until required.

The seeds *Trigonella foenum-graecum* were extracted by taking 20 g of each sample in 160 ml of water and organic solvent in 250 ml flask. Then continuous shaking with an orbital shaker and an occasional stirring with a glass rod manually at 4 hours interval. After 72 hours the macerates solutions were filtered in separate flasks using a qualitative filter paper (Whatman No 4 filter paper, Whatman Ltd., England). Then centrifuged at x 10000 g for 15 min. and supernatant were used for anthelminthic testing. The filtered supernatant was dried until a constant dry weight of each extract was obtained. Then this dried plant extract were reconstituted in the respective solvent.

Aqueous extract of seeds of *Trigonella foenum-graecum* were reconstituted in 10% DMSO. The extracts were stored in 15 ml black cap bottle, covered with aluminum foil for the prevention of *Trigonella foenum-graecum* extract directly from light. The residues were stored at 4 °C for further used. The extract of seed of *Trigonella foenum-graecum* was tested *in vitro* against *Gastrothylax crumenifer*. Treated parasites with aqueous extract of seeds of *Trigonella foenum-graecum* were fixed in Bouin’s fluid for histological studies by light microscope (LM) for 24 hours after they were washed in running tap water for at least 24 hours. These parasites were dehydrated in ascending series of alcohol, cleared in xylene, blocks were prepared in paraffin wax and sections were cut at 6µ on rotary microtome. Then sections were stained by Haemotoxylin & Eosin and then mounted with DPX (Bancroft & Stevens, 1977).

Results and Discussion

Present investigation revealed that a number of *in vitro* tests employing *Gastrothylax crumenifer* were carried out to test the activity of aqueous extract of *Trigonella foenum-graecum* in direct contact with *Gastrothylax crumenifer*. Treated worms become slender, shrunken, paralyzed and then finally died after 5 hours at 130 mg/ml concentration of seed of *Trigonella foenum-graecum*.

The effect of aqueous seed extract on the *Gastrothylax crumenifer*, when examined under light microscope observed that the treated worms became small and found shrinkage in tegument. The morphology of control *Gastrothylax crumenifer* was compared with treated animal by light microscopy. Control worms showed smooth spineless tegument followed by surface syncytium, subsyncytial zone, longitudinal and circular muscle. Control *Gastrothylax crumenifer* showed the normal microscopic structure of tegument (Fig. 1). In contrast, aqueous extract of seeds of *Trigonella foenum-graecum* treated *Gastrothylax crumenifer* showed detachment and discontinuation of surface syncytium in tegument (Figs. 2, 3 and 4) and also showed rupturing parenchymatous cell, tegument cells and Surface syncytium of treated *Gastrothylax crumenifer* (Fig. 3). Swelling and blebbing were also observed in tegument of treated *Gastrothylax crumenifer* (Fig. 5).
Fig. 1 A portion of tegument of control Gastrothylax crumenifer showing surface syncytium (SS), subsyncytial zone (SZ), longitudinal muscles (LM) and circular muscles (CM) x 185.

Fig. 2 Showing detachment of tegument Gastrothylax crumenifer showing surface syncytium (SS), tegumental cell (TC) and parenchymatous cell x 185.

Fig. 3 Photomicrography exhibiting rupture parenchymatous cell (PC), tegument cells (TC) and surface syncytium (SS) of treated Gastrothylax crumenifer x 110.

Fig. 4 Showing discontinuation in tegument (DT) of treated Gastrothylax crumenifer x110

Fig. 5 Blebbing (B) of tegument showing in treated Gastrothylax crumenifer x110
Tegument is most important part of the trematode that is in direct contact with the host's tissue along with body fluids. Modification in structure of the tegument is necessary in developing any rational drugs which may damage the parasites through their actions on the tegument (Panyarachun et al., 2010; Shaheen & Eman, 2012 and Saowakon et al., 2013).

Tegumental detachment in treated worms may lead to complete breakdown of cells in the parenchyma leaving vacuolated areas (Veerakumari & Paranthaman 2004 and Veerakumari et al., 2012). Presence of vacuoles in the parenchyma could distort the structure of the *Gastrothylax crumenifer*.

Blebbing is an action in response to anthelminthic treatment, where secretory bodies are rapidly transported towards the tegument and released from the apical plasma membrane in an effort to replace damaged membrane and maintain the integrity of the tegumental surface (McConville et al. 2006). Our findings are similar with Buddhachat et al., 2012, showed that anthelminthic plants change the morphology of tegument surface and sucker in trematode.

Trigonella foenum-graecum has many properties to become pathogenic organisms inactive and cause mortality this observations are agreement with Laroubi et al., 2009; Bhalake et al., 2009; Zaen Al-abdeen et al., 2010 Challam et al., 2010 and Alam et al., 2014.

So various studies revealed that *Trigonella foenum-graecum* has no toxic effect for animals and the seeds of *Trigonella foenum-graecum* are very useful plant for treatment of *Gastrothylax crumenifer*. Seed extract of *Trigonella foenum-graecum* are safer, cheaper and ecofriendly way for poor farmers than costly veterinary medicines. Thus plant-based medicines such as *Trigonella foenum-graecum* could be used as an efficient anthelmintic in treatment of paramphistomiasis.

Acknowledgement

The authors are grateful to Dr. B. Bhardawaj Head of RDDC, Dr. Chandra Shekhar Bhatnagar M. V. Sc. (Veterinary Parasitology) and Ajay kumar salvi, S. V. O. Regional Disease Diagnostic Centre, Dept. of Animal Husbandry, Udaipur, Rajasthan for their valuable suggestions.

References

Bancroft JD and Steven A. 1977. Theory and practice of histological

Dutt SC. 1980. Paramphistomes and paramhistomiasis of domestic ruminant in India. PAU Press, Ludhiana and published by the joint Director, Communication Center, Punjab Agricultural University, Ludhiana.

