Original Research Article

Antimicrobial activity of frankincense of *Boswellia serrata*

Shaik Mannur Ismail¹, Sudheer Aluru², KRS Sambasivarao¹ and Bhaskar Matcha²*

¹Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
²Division of Animal Biotechnology, Department of Zoology, S.V University, Tirupati, India

*Corresponding author

A B S T R A C T

This work describes the *in-vitro* screening of antimicrobial activity of frankincense of *Boswellia serrata*. Different concentrations (25, 50, 75 and 100 mg/ml) was evaluated for the investigation of antimicrobial efficacy using Gram positive (*Bacillus subtilis*, *Staphylococcus aureus* and *Streptococcus pneumonia*) and Gram negative (*E.coli*, *Klebsiella pneumonia*, *Enterobacter aerogenes*, *Pseudomonas aeruginosa* and *Proteus vulgaris*) microbes. Inhibition halos were evaluated and compared with antibiotic Ciprofloxacin (5µg/ml) as positive control. DMSO was used as a negative control. Results demonstrated significant antimicrobial activity. In this assay, extracts of frankincense showed antimicrobial activity comparable with standard and can be used in combating the bacterial infested diseases caused by the studied bacterial strains.

Key words

Boswellia serrata, Frankincense, Antimicrobial Activity, Ciprofloxacin

Introduction

Plant antimicrobials tender prospective agent to deal with the hazard of biological warfare (Gibbons, 2008). Consideration to the sighting of novel plant antimicrobials must be paid in this new era of chemotherapeutic healing of infection by using plant-derived principles and on discovery of new antinfective agents (Cowan, 1999). Herbal preparations can supplement other systems of medicine for the treatment of diseases caused by bacteria (Archana and Abraham, 2011). In fact, efforts are going on to identify and isolate secondary metabolites from plants as prospective modulators of bacterial resistance (Stavri *et al.*, 2007).

Taxonomic status of *Boswellia serrata*

Boswellia serrata Roxb. ex Colebr. (Burseraceae) is a deciduous moderate to large sized branching tree that grows abundantly in the seshachalam hill valleys. The morphological characters have crown spreading and flat, bark greenish, ashy grey, ex-foliating in thin flakes. Leaves apically clustered, imparipinnate. Leaflets 14-26, thin-coriaceous, oblong-lanceolate, entire or crenate, obtuse or subacute, secondary nerves more than 16 pairs. Flowers pinkish white, in little branched panicles. Sepals and petals 5-7 each. Stamens 10-16, inserted below disc; disc annular. Ovary 3-locular; ovules 2 per locule, pendulous. Fruits trigonous, brown, pyrenes 3, heart shaped, each one seeded.

Distributed commonly in lower hill slopes of Tirumala and Talakona of Seshachalam hill ranges. Flowering and Fruiting occurs in the season of March-August. Traditional usage of Gum is diuretic, diarrhoea, dysentery, stomachic, cardiac diseases, cough, haemorrhage, dyspnoea, polyuria, leucorrhoea, oligospermia, urinary troubles, piles, ulcers, burns (Madhava chetty et al., 2013).

When incisions are made in the trunks of the Boswellia serrata trees to produce exuded gum (Oleo gum-resin), which appears as milk like resin. The resin hardens (solidification) into orange-brown gum resin known as frankincense or olibanum. There are numerous species and varieties of frankincense trees, including Boswellia serrata in India.

The resins of Boswellia serrata have been used for the treatment of rheumatoid arthritis and other inflammatory diseases (Banno, 2006) such as Crohn's disease (Langmead, 2006) in traditional medicine of many countries. The anti-inflammatory activity has been attributing to the resin's ability in regulating immune cytokines production (Chevrier, 2005) and leukocyte infiltration (Sharma et al., 1988; Singh and Atal, 1986).

Fig.1 A. Flowering and Fruiting of Boswellia serrata B. Tree Habitat C. Crude Frankincense resin
Boswellia serrata extract also exhibits antibacterial and anti-fungal activities (Weckesser, 2007). Additionally, extracts from Boswellia species gum resins might possess anti-cancer activities, based on their anti-proliferative and pro-apoptotic activities in rat astrocytoma cell lines and Clinically, extract from the resin reduces the peritumoral edema in glioblastoma patients (Winking, 2000) and in human leukemia cell lines (Hostanska, 2002), as well as their anti-carcinogenic activity in chemically induced mouse skin cancer models (Huang, 2000). The pharmacological characteristics and clinical efficacy of Boswellia serrata have been studied, with research published and systematically reviewed in the medical literature (Ernst, 2008). These results suggest that frankincense resin contains active ingredients that modulate important biological activities. B. serrata flowers and leaves showed significant antibacterial activity (Mohammed Aman et al., 2010). In addition B. serrata has versatile pharmacological activities (Arshiya Sultana et al., 2013).

However, there are no enough scientific reports to support these supposed antimicrobial activity. The present investigation was undertaken which deals with the evaluation of antimicrobial activity of frankincense resin extract of Boswellia serrata.

Materials and Methods

The crude gum is collected and processed. The collected material is dried under shade and made into powder and subjected to hot percolation by using soxhlet apparatus with water. The extract was filtered using Whatsman-No. 1 filter paper and the extraction procedure were repeated three times. The filtrate was used for the biological assay.

Microorganisms

Clinical isolates of Gram positive (Bacillus subtilis, Staphylococcus aureus and Streptococcus pneumonia) and Gram negative (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Enterobacter aerogenes and Proteus vulgaris,) authentic bacterial strains were used in the study which are procured from Institute of Microbial Technology (IMTECH), Chandigarh. The stock culture are maintained at Division of Animal Biotechnology, Sri Venkateswara University. All the microorganisms were maintained at 4°C on nutrient agar slants.

Preparation of the Bacterial Suspension

The turbidity of each of the bacterial suspension was prepared to match to a 0.5 McFarland standard (1.5x10^8 CFU/ml). Measure the turbidity with the aid of a spectrophotometer at an optical density 0.08-0.13 and turbid suspension at 625 nm as per Bauer-Kirby Method (1966).

Determination of antimicrobial activity

Culture of the bacterial organism was aseptically introduced and evenly spread using sterile ‘L’ rod on the surface of sterile Mueller Hinton agar (M173/M1084, HiMedia) plates. The agar disc diffusion test is the most convenient and widely used method for routine antimicrobial susceptibility testing according to CLSI (Clinical Laboratory Standards Institute; formerly NCCLS). 25 μL of different concentrations (25, 50,75,100 mg/ml) of the resin coarse powder extract were added on Whatman No. 1 filter paper disc (6mm) and was inoculated with a loopful of the test organism previously diluted to 0.5 McFarland turbidity standards seeded on the medium. The experiment was run in
triplicate for each extract and each organism tested. The plates were incubated at 37°C for 24 hours and the zones of inhibition were measured in millimeters using a calibrated instrument like zone scale (HiMedia). DMSO was used as a negative control. These inoculated tubes were then incubated Control experiments comprising inoculums without the extract were set up.

Determination of MIC

The determination of the MIC was done with different dose levels of (25, 50, 75 and100 mg/ml) of extract. The procedure was repeated on all the test organisms using the standard antibiotic Ciprofloxacin (5 µg/mL Disc, Himedia, Mumbai, India).

The statistical analysis was undertaken using t-test in SPSS statistics software (Version 20, IBM Corporation, New York, USA), considered significant when p≤0.05.

Result and Discussion

In this study the resin extract of commercially available Boswellia serrata powder was evaluated for their antimicrobial activity. Preliminary antimicrobial screening assay of commercially available Boswellia serrata gave relatively wide inhibition zone against the test strains. Minimum inhibitory concentration (MIC) is defined as the lowest concentration that will inhibit the growth of a test organism over a defined interval related to the organism’s growth rate, most commonly 18-24h (Turnidge et al., 2003). The zone size is inversely proportional to the minimum inhibitory concentration (MIC). The MIC values revealed different activities against the eight tested bacteria at the concentrations 10, 25, 50, 100mg/ml (Table-1). All the bacterial strains were compared with Ciprofloxacin under the same experimental conditions.

The highest antimicrobial activity was observed on *E. coli* with zone of inhibition as 21.87±0.98 and the lowest effect was on *E. aerogenes* with a zone of inhibition of 11.67±1.00 mm. Whereas, Standard showed highest activity against *E.aerogenes* (30.27±1) and lowest activity against *S. pneumoniae* (20.07±0.74). The order of inhibitory activity of extract against different organisms is: *E. coli* > *S. aureus* > *B. subtilis* > *S. typhi* > *K. pneumoniae* > *S. pneumoniae* > *E. aerogenes* > *P. vulgaris*. The order of inhibitory activity of standard against different organisms are summarized as *P. vulgaris* > *E.coli* > *S. aureus* > *E. aerogenes* > *P. aureginosa* > *B. subtilis* > *K. pneumonia* (Graph-1). This shows that the studied *Boswellia serrata* frankincense extract mostly exhibited bacteriostatic effects.

Extract inhibitory activity was statistically compared to the inhibitory activity of standard and observed that extract inhibitory activity on the microbes has significantly lower activity than the standard (P≤0.01, P≤0.001).

Disc diffusion test is a qualitative test method. The recommended medium for disc diffusion testing is Mueller-Hinton agar (MH; Himedia, Mumbai, India) (CLSI, 2012). This medium demonstrates good batch-to-batch reproducibility, and supports the growth of most non fastidious bacterial pathogens (Jorgensen and Turnidge, 2003).

Well-variant of the diffusion method was more sensitive and best conditions for the determination of minimal inhibitory concentration (Valgas et al., 2007). Dimethyl sulfoxide (DMSO) used as solvent for natural as well as synthetic antibacterial compounds (Wadhwani et al., 2009; Houghton and Raman, 1998).
Table 1: Minimum Inhibitory Concentrations (MIC)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Test Organism</th>
<th>G⁺ / G⁻</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bacillus subtilis</td>
<td>G⁺</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>2.</td>
<td>Staphylococcus aureus</td>
<td>G⁺</td>
<td>+</td>
<td>+</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>Streptococcus pneumoniae</td>
<td>G⁺</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>4.</td>
<td>Escherichia coli</td>
<td>G⁻</td>
<td>+</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Klebsiella pneumoniae</td>
<td>G⁻</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>6.</td>
<td>Pseudomonas aeruginosa</td>
<td>G⁻</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Enterobacter aerogenes</td>
<td>G⁻</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>8.</td>
<td>Proteus vulgaris</td>
<td>G⁻</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

I = 25 mg/ml; II = 50 mg/ml; III = 75 mg/ml; IV = 100 mg/ml, * = MIC, - = No growth, + = Moderate growth, ++ = Dense growth, G⁺ = Gram Positive bacteria, G⁻ = Gram Negative bacteria.
However, exclusive focus on individual biochemical targets neglects the fact that strong synergy of multiple constituents in a crude drug may prove more potent and effective than any single purified compound, or that interactions of co-occurring phytochemicals may help nullify the toxic effects of individual constituents. So while it is important to understand the active agents within medicinal plants, it should also be with caution that we extract and use constituents in isolation. In this study the *Boswellia* extract have shown greater antimicrobial activity which may explain anonymous claim on the topical use of *Boswellia serrata* frankincense for microbial infections.

In Conclusion, the screening of antimicrobial activity performed on resin fractions of 25, 50, 75, 100 mg/ml of *Boswellia serrata*, traditionally important medicinal plant proved to be a bacteriostatic agent. The current work will provide new reference data for the drug development and possesses the ability to inhibit pathogenic bacteria. Further studies should be done on fractionation and identification of bioactive constituents which are responsible for antibacterial activity.

References

