Review Article

Role of Enterococci faecalis in failure of Endodontic treatment

Sonia Bhonchal Bhardwaj*

Department of Microbiology, Dr Harvansh Singh Judge Institute of Dental Sciences and Hospital, Punjab University, Chandigarh, India

*Corresponding author e-mail: sbbhardwaj2002@yahoo.com

ABSTRACT

Enterococcus faecalis is associated with a significant number of refractory endodontic infections. Studies report a prevalence of Enterococcus faecalis ranging from 24% up to 77% in teeth with failed endodontic treatment. The origin of the micro-organism remains unclear, as enterococci do not belong to the normal oral microflora. The survival and virulence factors possessed by Enterococcus faecalis including its ability to compete with other microorganisms, invade dentinal tubules and resist nutritional deprivation. Oral Enterococcus faecalis may be a potential reservoir for the transferable elements of virulence and antimicrobial resistance. Future advances in endodontic microbiology will take us towards complete microbial elimination for successful root canal treatment.

Keywords

Enterococcus faecalis; virulence factors; root canal treatment.

Introduction

The resident microbial flora in the oral cavity typically contains 10\(^{10}\) bacteria (Mims et al., 2005). However, only 150 microbial species have been isolated and cultured from root canals. The endodontium is a sterile cavity and the invasion of oral microbes to establish infection is by the penetration to enamel and dentine and overcome the host responses (Bergenholtz, 1974). Although all the bacteria in the oral cavity can invade the root canal, only a few microbes have been identified in infected root canals (Miller, 1994; Sundqvist, 1994; Wilkins et al., 2003). Endodontic infections with Enterococcus faecalis are probably not derived from patients' own microflora, which indicates that in these infections Enterococcus faecalis is of exogenous origin (Vidana et al., 2011).

Enterococci are normal human commensals adapted to the nutrient-rich, oxygen-depleted and ecologically complex environment of the oral cavity, GIT and the vagina. Enterococci now rank among the top three nosocomial bacterial pathogens (Richards et al., 2000; Wisplinghoff et al., 2003). Up to 90% of enterococcal infections in humans are caused by Enterococcus faecalis (Kayaoglu and Orstavik, 2004).

The objective of this article is to describe characteristics inherent to Enterococcus
faecalis and as an etiology in failing root canal treatment.

Characteristics of Enterococcus faecalis

Enterococci are gram positive cocci that can occur singly, in pairs or as short chains. They are facultative anaerobes, possessing the ability to grow in the presence or absence of oxygen. Enterococci can withstand harsh environmental conditions. Enterococci can grow at 10°C and 45°C at pH 9.6 in 6.5% NaCl broth and survive at 60°C for 30 minutes (Sherman, 1937). This may explain its survival in root canal infections, where nutrients are scarce and there are limited means of escape from root canal medicaments.

There are currently 23 enterococci species and they are divided into five groups based on their interaction with mannitol, sorbose and arginine. Recently molecular methods PCR amplification assays have been used (Facklam RR et al., 2002). Random amplified polymorphic DNA (RAPD) analysis and pulse-field gel electrophoresis (PGGE) have been used to determine various E. faecalis subtypes (Dauttle et al., 2002).

Virulence factors

The factors most extensively studied are aggregation substance, surface adhesions, sex pheromones, lipoteichoic acid, extracellular superoxide, gelatinase, hyaluronidase and cytolysin (hemolysin).

Aggregation Substance (AS)

It is a pheromone-responsive, plasmid encoded bacterial adhesion that mediates efficient contact between donor and recipient bacterium, facilitating plasmid exchange (Zoletti et al., 2011). E. faecalis has been shown to adhere to host cells, express proteins that allow it to compete with other bacterial cells and alter host responses (Love, 2001). As has frequently been detected in clinical isolates (Elsner et al., 2000) but is rarely found among clinical isolates from healthy volunteers (Coque et al., 1995) suggesting a possible role for AS in human enterococcal infections. In a recent study of characterization of virulence factors and clonal diversity of Enterococcus faecalis isolates from treated dental root canals by phenotyping and western blotting test 45% had genes for AS (Archimbaud et al., 2002).

Surface Adhesins (SA)

Enterococcal gene esp, encoding the high molecular weight surface protein esp, has been detected in abundance among bacteremia and endocarditis isolates (Toledo-Arana et al., 2001). Esp is associated with promotion of primary attachment and biofilm formation of Enterococcus faecalis on abiotic surfaces (Toledo-Arana et al., 2001). In a recent study 90% of virulence genes were efaA and ace genes detected by PCR from treated root canals of teeth (Nallapareddy et al., 2000a). The disruption of the ace gene impaired the conditional binding of Enterococcus faecalis to the extracellular matrix proteins (Nallapareddy et al., 2000a). Serum invasion of dentinal tubules by Enterococcus faecalis was suggested while other test species Streptococcus gordoni DLI and Streptococcus mutans WG8 was inhibited.

Sex Pheromones

Production of the sex pheromones by strains of Enterococcus faecalis and its bacterial clumping inducing effect was
first described by (Danny et al., 1978). It
was subsequently shown that antibiotic
resistance and other virulence traits, like
cytolysin production can be passed in
strains of Enterococcus faecalis by sex
pheromone system (Clewell and Weaver,
1989). Some of Enterococcus faecalis sex
pheromones were found to be chemotactic
for human neutrophils (Sannomiya et al.,
1990). A strong association between
gingival crevicular fluid neutrophilic lysosomal enzymes and chronic periodontal disease have been found
(Buchmann et al., 2002). In a study on oral enterococci response to pheromones in Enterococcus faecalis culture filtrate was seen (Sedgley et al., 2004).

Gelatinase

Enterococcus faecalis posseses gelatinase
(Hubble TS et al.,2003) which help it bind to dentin and gelatinase levels were elevated in oral rinses, crevicular fluid and whole saliva samples (Makela et al.,1994) and in gingival biopsy specimens (Soell M et al.,2002) from periodontitis patients compared with healthy subjects. High gelatinase production has also been seen in epidemiologic studies with human clinical isolates(Kanemitsu K et al ,2001).

Cytolysin

Enterococcus faecalis posses cytolysin or hemolysin as a virulence factor. Conflicting studies suggesting the role of cytolysin as a possible virulence factor. Initial studies reported that approximately 60% of Enterococcus faecalis isolates derived from fecal specimens from healthy individuals. However recent studies show that the role of cytolysin as a virulence factor is small or negligible (Coque et al., 1995 and Elsner et al., 2000).

Survival of Enterococcus faecalis

E. faecalis is less dependent upon virulence factors, it relies more upon its ability to survive and persist as a pathogen in root canals of teeth (Rocas et al., 2000). It exhibits antibiotic resistance of genes from other microbes or by spontaneous mutation thereby making these microbes recalcitrant to the usual root canal treatments (Mundy et al., 2000). The presence of serine protease and collagen binding protein help in the invasion of *E. faecalis* into the dentinal tubules (Hubble et al., 2003).

E. faecalis is also known to possess alkaline tolerance due to cell wall associated proton pump which makes it resistant to the antimicrobial effect of Ca OH (Fabricus et al., 1982; Tansiverdi et al., 1997). *E. faecalis* is able to form a biofilm that helps it resist destruction by enabling the bacteria to become 1000 times more resistance to phagocytosis, antibodies and antimicrobials than non-biofilm producing organisms (Chavez De Paz Le et al., 2003).

Eradication of Enterococcus faecalis

Sodium hypochlorite is an effective irritant for all presentations of *E. faecalis* including its existence as a biofilm (Distel et al., 2002). MTAD a new root canal irritant consisting of a mixture of a tetracycline isomer, an acid and a detergent has shown success in its ability to destroy *E. faecalis* in its preliminary studies (Abdullah M et al.,2005). Calcium hydroxide is relatively ineffective against *E. faecalis* because of considerations mentioned previously.
Combination of irrigants to eliminate E. faecalis have been used. Erythromycin mixed with Ca OH seems to be a valuable option against monoinfections of enterococci (Shabahang and Torabinejab, 2003). Chlorhexidine has shown to provide a better antimicrobial action against E. faecalis (Basrani et al., 2002).

The antimicrobial activity against E. faecalis of various sealers has also been studied. Roth 811 (Roth International Ltd, Chicago) has shown to exhibit the greatest antimicrobial activity against E. faecalis as compared to other sealers (Mickel, 2003). Recently antimicrobial efficacy was assessed against clinical isolates of enterococci from persisting root canal infections by using nanometric bioactive glass 45s5, the killing efficacy was higher (Waltimo et al., 2007).

A better understanding of the role of the virulence factors of E. faecalis in endodontic infections, survival mechanisms that enable it to cause persistent endodontic infections and continued research on E. faecalis and its elimination from the dental apparatus will improve treatment results in endocarditis.

References

Dunny, G.M., B.L. Brown and Clewell,

