![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
While it is true that chemical fertilizers are effective when it comes to increasing production and compensating for a lack of resources, they do result in soil, water, and biological resource depletion and destruction, and the search for alternatives is a considerable focus of much research around the globe. It has become increasingly important to explore the use of beneficial biological organisms, including microbes (which microalgae are generally accepted as being classified as) in industrial agriculture as agents that may assist with fertilization, since they can also contribute to sustainable crop production and potential improvements in food safety. In this study, the potential for freshwater microalgae to act as biofertilizers was explored with a view to improving yield quality and productivity whilst minimizing environmental pollution. The purpose of this study was to determine whether freshwater algae (Pseudo coccomyxa sp and Chlorella sp) could be used to increase barley (Hordeum vulgare) seed germination rates and plant growth through the process of biofertilization. A comparison of barley seed growth with algae applied as a fertilizer before sowing was conducted in three control vessels and three treatment vessels. Weekly monitoring and watering schedules were followed while the barley germinated and grew. There was a significant difference in height, root length, and fresh and dry root, leaf, and stem weights between the experimental and control plants. After six weeks, barley seedlings treated with freshwater algae grew the fastest and gained the most weight. Treatment plants averaged 48 cm in length, while control plants averaged 37 cm. As a result of the treatment, the total fresh weights of the plants were heavier (0.37g) than those of the control plants. In addition, microalgae treated soil retained essential nutrients even after plants were removed at the end of the experiment.
Adam, D. (2021). How far will the global population rise? Researchers can’t agree. Nature, 597(7877): 462-465. https://doi.org/10.1038/d41586-021-02522-6
Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M.; Gardner, R. D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. (2021). Algal Res. 54, 102200. https://doi.org/10.1016/j.algal.2021.102200
Ammar, E and Shershaby, N. (2022). Algae as bio-fertilisers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5): 3083-3096. https://doi.org/10.1016/j.sjbs.2022.03.020
Australian Export Grains Innovation Centre (AEGIC). (2022). Barley.
Awad, A., Odat, N., Abu-Romman, S., Hasan, M., Al-Tawaha, A. R. (2021). Effect of Salinity on Germination and Root Growth of Jordanian Barley. Journal of Ecological Engineering, 22(1): 41-50. https://doi.org/10.12911/22998993/128875
Azimi. S. M, Farnia. A, Shaban. M and Lak. M. (2015). Effect of different biofertilizers on seedyield of barley (Hurdeom vulgar L.), Bahman cultivar. International Jounral of Advanced Biological and Biomedical Research. pp. 538-546.
Bar?óg, P., Grzebisz, W. and ?ukowiak, R. (2022). Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants, 11, 1855. https://doi.org/10.3390/plants11141855
Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M., et al., (2018a). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J. Appl. Phycol. 30, 1061– 1072. https://doi.org/10.1007/s10811-017-1283-3
Barone, V., Puglisi, I., Fragalà, F., Lo Piero, A. R., Giuffrida, F., and Baglieri, A. (2018b). Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J. Appl. Phycol. https://doi.org/10.1007/s10811-018-1518-y.
Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., Dar, S. A. (2020). Concerns and Threats of Contamination on Aquatic Ecosystems. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_1.
Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., Sims, R. (2019). The future challenges of food and agriculture: an integrated analysis of trends and solutions. Sustainability. 11:su11010222. https://doi.org/10.3390/su11010222
Castro-Camba, R., Sánchez, C., Vidal, N., and Vielba., J. M. (2022). Plant Development and Crop Yield: The Role of Gibberellins. Plants, 11(19), 2650; https://doi.org/10.3390/plants11192650
Chaudhary P, Singh S, Chaudhary A, Sharma A and Kumar G. (2022). Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front. Plant Sci. 13:930340. https://doi.org/10.3389/fpls.2022.930340
Cope, J. E., Norton, G. J., George, T. S. and Newton, A. C. (2022). Evaluating Variation in Germination and Growth of Landraces of Barley (Hordeum vulgare L.) Under Salinity Stress. Front. Plant Sci. 13:863069. https://doi.org/10.3389/fpls.2022.863069
Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., Burt, A. F., Mavumengwana, V., Keyster, M. and Klein, A. (2022). Biofertilizer: The Future of Food Security and Food Safety. Microorganisms, 10:1220. https://doi.org/10.3390/microorganisms1006122
Dasgupta, D., Kumar, K., Miglani, R., Mishra, R, Panda, A. K. and Bisht, S. S. (2021). Microbial biofertilizers: Recent trends and future outlook. In Recent Advancement in Microbial Biotechnology Agricultural and Industrial Approach (Mandal, S. D and Passari A. K. editors). Academic Press. https://doi.org/10.1016/B978-0-12-822098-6.00001-X
Delogu, G., Cattivelli, L., Pecchioni, N., De Falcis, D., Maggiore, T. and Stanca, A. M. (1998). Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. Eur J Agron 9:11–20. https://doi.org/10.1016/S1161-0301(98)00019-7
DESA U N. (2015). World population Prospects: The 2015 revision, Key Findings and Advance Tables. Working Paper No ESA/P?WP. 241, United Nations, Department of Economic and Social Affairs, Population Division, New York, NY.
Desikachary, T. V. (1959). Cyanophyta. Indian Council of Agricultural Research, New Delhi Publisher: Indian Council of Agricultural Research, New Delhi.
Dineshkumar, R., Kumaravel, R., Gopalsamy, J, Sikder, M. N. A. and Sampathkumar, P. (2018). Microalgae as Bio-fertilizers for Rice Growth and Seed Yield Productivity. Waste Biomass Valorization. 9:793-800. https://doi.org/10.1007?s12649-017-9873-5.
El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., et al., (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J. Appl. Phycol. 30, 2929–2941. https://doi.org/10.1007/s10811-017-1382-1.
Faheed, F. A., and Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolomic aspects of lettuce plant. J. Agric. Soc. Sci. 4, 165–169.
FAO. (2016). The state of food and agriculture, climate change, agriculture and food security. The Food and Agriculture Organization of the United Nations, Rome.
FAO. (2017). The future of food and agriculture trends and challenges. The Food and Agriculture Organization of the United Nations, Rome.
Ferreira. A., Bastos C. R V, Marques-dos-Santos C, Acie´ n-Fernandez F G and Gouveia L (2023) Algaeculture for agriculture: from past to future. Front. Agron. 5:1064041. https://doi.org/10.3389/fagro.2023.1064041
Galieni, A., Falcinelli, B., Stagnari, F., Datti, A., and Benincasa, P. (2020). Sprouts and Microgreens: Trends, Opportunities, and Horizons for Novel Research. Agronomy 2020, 10, 1424. https://doi.org/10.3390/agronomy10091424
Garcia-Gonzalez, J. and Sommerfeld, M. (2016). Biofertilizer and bio stimulant properties of the microalga Acutodesmus dimorphus. J Applied Phycology. 28: 1051–1061. https://doi.org/10.1007/s10811-015-0625-2
Gaur, V. (2010). Biofertilizer - Necessity for Sustainability,” J. Adv. Dev., vol. 1, pp. 7–8.
Goel, A. K., Laura, R. D. S., Anuradha, P. G. and Goel, A. (1999). Use of biofertilizers: potential, constraints and future strategies review,” Int. J. Trop. Agric., vol. 17, pp. 1–8.
Gonçalves, J.; Freitas, J.; Fernandes, I.; Silva, P. Microalgae as Biofertilizers: A Sustainable Way to Improve Soil Fertility and Plant Growth. (2023). Sustainability, 15, 12413. https://doi.org/10.3390/su151612413
Hegde, D. M., Dwivedi, B. S. and Babu, S. N. S. (1999). Bio-fertilizers for cereal production in India,” Ind. J. Agric. Sci., vol. 69, pp. 73–83.
Ibáñez, A., Garrido-Chamorro, S., Vasco-Cárdenas, M. F., Barreiro, C. (2023). From Lab to Field: Biofertilizers in the 21st Century. Horticulturae, 9, 1306. https://doi.org/10.3390/horticulturae9121306
Jaiswal, S. K., Mohammed, M., Ibny, F. Y. I. and Dakora, F. D. (2021). Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. Front. Sustain. Food Syst. 4:619676. https://doi.org/10.3389/fsufs.2020.619676
Kebede, A., Kang, M. S., Endashaw Bekele, E. (2019). Advances in mechanisms of drought tolerance in crops, with emphasis on barley. Advances in Agronomy, Volume 156, 2019, Pages 265-314 https://doi.org/10.1016/bs.agron.2019.01.008
Khan, M. I., Shin, J. H., and Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17:36. https://doi.org/10.1186/s12934-018-0879-x
Kumar, S., Diksha, Sindhu, S. S. Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, Volume 3: 100094. https://doi.org/10.1016/j.crmicr.2021.100094
Kumar, V., Panneerselvam, S., Soni, J. K., Lakshmanan, A, and Kumar, P A. (2017). Response of blue-green algae on rice (Oryza sativa) crop production at elevated temperature. The Pharma Innovation Journal; 6(8): 26-28.
Lin, W., Lin, M., Zhou, H., Wu, H., Li Z., Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. Plos, 14(5): e0217018. https://doi.org/10.1371/journal.pone.0217018
Morari F., Vellidis G. and Gay, P. (2011). Fertilizers, In Encyclopedia of Environmental Health, Pages 727-737. https://doi.org/10.1016/B978-0-444-52272-6.00464-5
Mückschel, F., Ollo, E., Glaeser, S. P., Düring, R., Yan, F., Velten, H., Theilen, U. and Frei, M. (2023). Nitrogen use efficiency of microalgae application in wheat compared to mineral fertilizer. J. Plant Nutr. Soil Sci. 2023;186:522–531. https://doi.org/10.1002/jpln.202300125
Mustafa, Y. C., Barik, K., Cakmakci, R. and Sahin, F. (2007). Effects of mineral and biofertilizers on barley growth on compacted soil. Acta Agriculture Scandinavica Section B – Soil and Plant Science. pp. 324-332.
Mutum, L., Janda, T., Ördög, V., and Molnár, Z. (2022). Biologia Futura: potential of different forms of microalgae for soil improvement. Biologia Futura 73:1–8
Naidu, R., Biswas, B., Willett, I. R., Cribb, J., Singh, B. K, Nathanail, C. P., Coulon, F., Kirk T. Semple, K. T,. Jones, K C, Barclay, A. and Aitken R. J. (2021). Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International 156 106616 https://doi.org/10.1016/j.envint.2021.106616
Osorio-Reyes, J. G., Valenzuela-Amaro, H. M., Pizaña Aranda, J. J. P.; Ramírez-Gamboa, D.; Meléndez-Sánchez, E. R.; López Arellanes, M. E.; Castañeda-Antonio, M. D.; Coronado-Apodaca, K. G.; Gomes Araújo, R.; Sosa-Hernández, J. E.; et al., (2023). Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar. Drugs 2023, 21, 93. https://doi.org/10.3390/md21020093
Parmar, P., Kumar, R., Neha, Y. and Srivatsan V. (2023). Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Front. Plant Sci. 14:1073546. https://doi.org/10.3389/fpls.2023.1073546
Penuelas, J., Coello, F. and Jordi Sardans, J. (2023). A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture & Food Security, 12(5):1-9. https://doi.org/10.1186/s40066-023-00409-5
Prescott, G. W. (1970). How to Know The Freshwater Algae (2nd ed).Brown Co.
Prisa, D. and Spagnuolo, D. (2023). Plant Production with Microalgal Biostimulants. Horticulturae 9, 829. https://doi.org/10.3390/horticulturae9070829
Puglisi, I., la Bella, E., Rovetto, E. I., lo Piero, A.R. and Baglieri, A. (2020). Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants, 9, 123. https://doi.org/10.3390/plants9010123
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg, L. H. (2018). Trends in global agricultural land use: implications for environmental health and food security. Annual Review of Plant Biology. 69:789–815. https://doi.org/10.1146/annurev-arplant-042817-040256
Rodríguez-Eugenio, N., McLaughlin, M. and Pennock, D. 2018. Soil Pollution: a hidden reality. Rome, FAO. 142 pp.
Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E. and Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9, 192. https://doi.org/10.3390/agronomy9040192
Saadatnia, H. & Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant soil environment. 55, 2009 (5): 207–212. https://doi.org/10.17221/384-PSE
Santini, G., Biondi, N., Rodolfi, L. and Tredici, M. R. (2021). Plant biostimulants from cyanobacteria: (2021). An emerging strategy to improve yields and sustainability in agriculture. Plants, 10, 643. https://doi.org/10.3390/plants10040643
Santos V. B, Araujo A. S. F., Leite L. F. C., Nunes L. A. P. L. and Melo W. J. (2012). Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems, Geoderma, vol. 170, pp. 227-231. https://doi.org/10.1016/j.geoderma.2011.11.007
Shahbandeh, M. (2022). Barley production worldwide 2008/2009 – 2021/2022. Statista.
Sido, M. Y., Tian, Y., Wang, X. and Wang, X. (2022). Application of microalgae Chlamydomonas applanata M9V and Chlorella vulgaris S3 for wheat growth promotion and as urea alternatives. Front. Microbiol. 13:1035791. https://doi.org/10.3389/fmicb.2022.1035791.
Singh, J. S., Kumar, A., Rai, A. N., Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 7, 529. https://doi.org/10.3389/fmicb.2016.00529
Singh, J. S., Pandey, V. C. and Singh, D. P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development, Agric. Ecosyst. Environ., vol. 140, no. 3–4, pp. 339–353, 2011. https://doi.org/10.1016/j.agee.2011.01.017
Sinha, R. K., Valani, D., Chauhan, K. and Agarwal, S. (2010). Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms : Reviving the dreams of Sir Charles Darwin, J. Adv. Biotechnol. Sustain. Dev., vol. 2, no. August, pp. 113–128, 2010.
https://doi.org/10.5897/JABSD.9000017
Solomon, W., Mutum, L., Janda, T. and Molnár, Z. (2023). Potential benefit of microalgae and their interaction with bacteria to sustainable crop production. Plant Growth Regulation (2023) 101:53–65 https://doi.org/10.1007/s10725-023-01019-8
Song, X., Bo, Y., Feng, Y., Tan, Y., Zhou, C., Yan, X., Ruan, R., Xu, Q. and Cheng, P. (2022), Potential applications for multifunctional microalgae in soil improvement. Front. Environ. Sci. 10:1035332. https://doi.org/10.3389/fenvs.2022.1035332
Thava Vasanthan, Ratnajothi Hoover, 2009. Barley Starch: Production, Properties, Modification and Uses, Editor(s): James BeMiller, Roy Whistler, In Food Science and Technology, Starch (Third Edition), Academic Press, 601-628. https://doi.org/10.1016/B978-0-12-746275-2.00016-1
Venkataraman. G. S. (2020). Algae for Fertilizer. Algae Production Systems.
Walsh, K., Bhattarai, S., Rolfe, J., Mohr-Bell. R. and Benyam, A. (2020). Accelerating Innovation to Application of Compost and Compost Industries in the Great Barrier Reef Catchments, report provided to Regional Development Australia
Wehr, J. D., Sheath, R. G., Kociolek, J. P. (2014). Freshwater Algae of North America: Ecology and Classification. Academic Press.
Wuang, S. C., Khin, M. C., Chua, P. Q. D., and Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 15, 59–64. https://doi.org/10.1016/j.algal.2016.02.009.
Wudil, A. H., Usman, M., Rosak-Szyrocka, J., Pila?r, L. and Boye, M. (2022). Reversing Years for Global Food Security: A Review of the Food Security Situation in Sub-Saharan Africa (SSA). Int. J. Environ. Res. Public Health 2022, 19, 14836. https://doi.org/10.3390/ijerph192214836
Youssef, M. M. A. &. Eissa, M. F. M. (2014). Biofertilizers and their role in management of plant parasitic nematodes. A review. Journal of Biotechnology and Pharmaceutical Research vol. 5, no. 1, pp. 1–6.
Zang, Y., Chun, I., Zhang L., Hong, S., Zheng, W. W. Xu, K. (2016). Effect of gibberellic acid application on plant growth attributes, return bloom, and fruit quality of rabbiteye blueberry. Scientia Horticulturae, 200: 13-18. https://doi.org/10.1016/j.scienta.2015.12.057![]() |
![]() |
![]() |
![]() |
![]() |