![]() |
PRINT ISSN : 2319-7692
Online ISSN : 2319-7706 Issues : 12 per year Publisher : Excellent Publishers Email : editorijcmas@gmail.com / submit@ijcmas.com Editor-in-chief: Dr.M.Prakash Index Copernicus ICV 2018: 95.39 NAAS RATING 2020: 5.38 |
Microbial enzymes are the preferred source to plants or animals for enzyme integration into biotechnological processes that enhanced sustainable development due to its cost- effective, ease of operation, re-use advantages and consistent production. Enzymes are biocatalysts, they accelerate a chemical reaction. They are used in industries such as biofuel, cleaning/detergents, food, pharmaceuticals, textiles, bioremediation and many more. The present review attempts to provide descriptive information on the recent development in enzyme technology for industrial applications as well as sustainable development.
Acrofan (2021). Global industrial enzymes market (2020 to 2027)-featuring BASF, Novozymes and DSM among others–research and markets.researchandmarkets.com (Accessed 21/05/2024).
Adinarayana K, and Ellaiah P. Production of alkaline protease by immobilized cells of alkalophilicBacillus sp.J Sci Ind Res (India). 2003;62:589–592
Adinarayana, K., Ellaiah, P., and Prasad, D. S. (2003). Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS PharmSci.Tech. 4, 440–448. https://doi.org/10.1208/pt040456.
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev. 2018;38:1295–1331. https://doi.org/10.1002/med.21475
Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioproducts and Processing, 98, 244–256. https://doi.org/10.1016/j.fbp.2016.02.003.
Akram, Z., Asgher, M., & Ahmad, S. Q. (2023). Chapter 18 - Microbial Proteases—Robust Biocatalytic Tools for Greener Biotechnology. In: Developments in Applied Microbiology and Biotechnology, Microbial Biomolecules (A. Kumar, M. Bilal, L. F. R. Ferreira, & M. Kumari, Eds.), 405–427. Academic Press.
Al-Qodah, Z., M.A. Yahya, M. Al-Shannag. 2013. On the performance of bioadsorption processes for heavy metal ions removal by low-cost agricultural and natural by-products bioadsorbent: a review Desalin. Water Treat., 85 (2017), pp. 339-357, https://doi.org/10.5004/dwt.2017.21256
Amoozegar, M. A., Fatemi, A. Z., Karbalaei-Heidari, H. R., & Razavi, M. R. (2007). Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiological Research, 162, 369–377. https://doi.org/10.1016/j.micres.2006.02.007.
Ariaeenejad, S., Kavousi, K., Mamaghani, A. S. A., Ghasemitabesh, R., and Hosseini Salekdeh, G. (2022). Simultaneous hydrolysis of various protein-rich industrial wastes by a naturally evolved protease from tannery wastewater microbiota. Sci. Total Environ. 815:152796. https://doi.org/10.1016/j.scitotenv.2021.152796.
Aruna K., Shah J., Birmole R. (2014). Production and partial characterization of alkaline protease from Bacillus tequilensis strains CSGAB0139 isolated from spoilt cottage cheese. Int J Appl Biol Pharm. 5, 201–221.
Asitok, A., Ekpenyong, M., Takon, I., Antai, S., Ogarekpe, N., Antigha, R., et al., (2022). Overproduction of a thermo-stable halo-alkaline protease on agro-waste-based optimized medium through alternate combinatorial random mutagenesis of Stenotrophomonas acidaminiphila.Biotechnol. Rep. 35:e00746. https://doi.org/10.1016/j.btre.2022.e00746
Banerjee, G., & Ray, A. K. (2017). Impact of microbial proteases on biotechnological industries. Biotechnology and Genetic Engineering Reviews, 33, 119-143. https://doi.org/10.1080/02648725.2017.1408256.
Barrett, A. J., and McDonald, J. K. (1986). Nomenclature: protease, proteinase and peptidase. Biochem. J. 237:935. https://doi.org/10.1042/bj2370935
Bernardeau, M., Hibberd, A. A., Saxer, G., Velayudhan, D. E., Marchal, L., and Vinyeta, E. (2022). O122 intrinsic properties of 3 Bacillus spp. strains from animal origin constituent of a direct fed Microbials/protease blend having growth performance in pigs fed high fiber diet. An. Sci. Proc. 13, 394–395. https://doi.org/10.1016/j.anscip.2022.07.132
Bernardo R, Hongying S, Fabio P, Antonio G J (2018) Plant viral proteases: beyond the role of peptide cutters. Front. Plant Sci. 9:666. https://doi.org/10.3389/fpls.2018.00666
Bhagwat, P. K., & Dandge, P. B. (2018). Collagen and collagenolytic proteases: A review. Biocatalysis and Agricultural Biotechnology, 15, 43–55. https://doi.org/10.1016/j.bcab.2018.05.005
Bhaskar, N., Sudeepa, E., Rashmi, H., and Selvi, A. T. (2007). Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 98, 2758–2764. https://doi.org/10.1016/j.biortech.2006.09.033
Bia?kowska, A. M., Morawski, K., & Florczak, T. (2017). Extremophilic proteases as novel and efficient tools in short peptide synthesis. Journal of Industrial Microbiology and Biotechnology, 44, 1325–1342. https://doi.org/10.1007/s10295-017-1961-9
Bond, J. S. (2019). Proteases: history, discovery, and roles in health and disease. J. Biol. Chem. 294:1643–1651. https://doi.org/10.1074/jbc.TM118.004156
Cerreti, M., Liburdi, K., Benucci, I., Emiliani Spinelli, S., Lombardelli, C., and Esti, M. (2017). Optimization of pectinase and protease clarification treatment of pomegranate juice. LWT-Food Sci. Technol. 82, 58–65. https://doi.org/10.1016/j.lwt.2017.04.022
Chalamaiah, M., Hemalatha, R., andJyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry, 135, 3020–3038. https://doi.org/10.1016/j.foodchem.2012.06.100.
Chanalia, P., Gandhi, D., Jodha, D. et al., (2011). Applications of microbial proteases in pharmaceutical industry: an overview. Rev. Med. Microbiol. 22(4):96–101. https://doi.org/10.1097/MRM.0b013e3283494749
Charles, P., Devanathan, V., Anbu, P. et al., (2008). Purification, characterization and crystallization of an extracellular alkaline protease from Aspergillus nidulans HA-10. J. Basic Microbiol. 48(5):347–352. https://doi.org/10.1002/jobm.200800043
Chatha, S. A. S., Asgher, M., Iqbal H. M. N. (2017). Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environ. Sci.Pollut. Res. 24:14005–14018. https://doi.org/10.1007/s11356-017-8998-1
Chi, C.-F., Wang, B., Wang, Y.-M., Zhang, B., & Deng, S.-G. (2015). Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods, 12, 1–10. https://doi.org/10.1016/j.jff.2014.10.027.
Chitte, R., and Chaphalkar, S. (2017). The World of Proteases Across Microbes, Insects, and Medicinal Trees. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_24
Chou, K. -C. (2006). Structural bioinformatics and its impact to biomedical science and drug discovery. Front. Med. Chem. 3, 455–502. https://doi.org/10.2174/978160805206610603010455
Chou, K.-C., and Howe, W. J. (2002). Prediction of the tertiary structure of the β-secretase zymogen. Biochem. Biophys. Res. Commun. 292, 702–708. https://doi.org/10.1006/bbrc.2002.6686
Chou, K.-C., Jones, D., and Heinrikson, R. L. (1997). Prediction of the tertiary structure andsubstrate binding site of caspase-8. FEBS Lett. 419, 49–54. https://doi.org/10.1016/S0014-5793(97)01246-5.
Chou, K.-C., Wei, D.-Q., and Zhong, W.-Z. (2003). Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun. 308, 148–151. https://doi.org/10.1016/S0006-291X(03)01342-1
Christensen, L. F., García-Béjar, B., Bang-Berthelsen, C. H., & Hansen, E. B. (2022). Extracellular microbial proteases with specificity for plant proteins in food fermentation. International Journal of Food Microbiology, 381, 109889. https://doi.org/10.1016/j.ijfoodmicro.2022.109889
Contesini F J, Melo R R, Sato H H (2018) An overview of Bacillus proteases: from production to application. Crit. Rev.Biotechnol. 38:321–334. https://doi.org/10.1080/07388551.2017.1354354
Cupi, D., Thorsen, M., Elvig-Jørgensen, S. G., Wulf-Andersen, L., Berti-Sorbara, J., Cowieson, A. J., Faru, M. U. (2022). Efficacy and safety profile of a subtilisin protease produced by fermentation in Bacillus licheniformis to be used as a feed additive. Heliyon 8: e10030 https://doi.org/10.1016/j.heliyon.2022.e10030
Damhus, T., Kaasgaard, S., and Olsen, H. S. (Eds.). (2013). Bagsvaerd, Denmark: Novozymes A/S; 2013. A/S.
Deng, A., Wu, J., Zhang, Y., Zhang, G., and Wen, T. (2010). Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresourc. Technol. 101, 7100–7106. https://doi.org/10.1016/j.biortech.2010.03.130
Dettmer A, Cavalli E, Ayub M A (2013) Environmentally friendly hide unhairing: enzymatic hide processing for the replacement of sodium sulfide and delimit. J. Clean Prod. 47:11–18 https://doi.org/10.1016/j.jclepro.2012.04.024
Dias, D. R., Vilela, D. M., Silvestre, M. P. C., and Schwan, R. F. (2008). Alkaline protease from Bacillus sp. isolated from coffee bean grown on cheese whey. World J. Microbiol. Biotechnol. 24, 2027–2034. https://doi.org/10.1007/s11274-008-9706-6.
Dodia, M., Rawal, C., Bhimani, H., Joshi, R., Khare, S., and Singh, S. P. (2008). Purification and stability characteristics of an alkaline serine protease from a newly isolated Haloalkaliphilic bacterium sp. AH-6. J. Ind. Microbiol. Biotechnol. 35, 121–131. https://doi.org/10.1007/s10295-007-0273-x.
Dos Santos Aguilar, J. G., & Sato, H. H. (2018). Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103, 253–262. https://doi.org/10.1016/j.foodres.2017.10.044
Dudani J S, Warren A D, Bhatia S N (2018) Harnessing protease activity to improve cancer care. Annu. Rev. Cancer Biol. 2:353–376. https://doi.org/10.1146/annurev-cancerbio-030617-050549
Ellaiah, P., Srinivasulu, B., and Adinarayana, K. (2002). A review on microbial alkaline proteases. J. Sci. Ind. Res. 61, 690–704.
Fang Z, Yong YC, Zhang J, Du G, Chen J. Keratinolytic protease: a green biocatalyst for leather industry. Appl Microbiol Biotechnol. 2017;101:7771–7779. https://doi.org/10.1007/s00253-017-8484-1
Fazilat A (2016) Production, isolation, purifcation and partial characterization of an extracellular acid protease from Aspergillus niger. Int. J. Adv. Res. Biol. Sci. 3(3):32–38. http://s-o-i.org/1.15/ijarbs-2016-3-3-5
FOC Group (2022). Industrial enzymes market worth $11.05 bn by 2029. Focus. Catal. 5:2. https://doi.org/10.1016/J.FOCAT.2022.04.006.
Foegeding, E. A., Davis, J. P., Doucet, D., & McGuffey, M. K. (2002). Advances in modifying and understanding whey protein functionality. Trends in Food Science & Technology, 13, 151–159. https://doi.org/10.1016/S0924-2244(02)00111-5.
Freitas D. M., Vieira S. L., Angel C. R., Favero A., Maiorka A. (2011) Performance and nutrient utilization of broilers fed diets supplemented with a novel mono-component protease. J. Appl. Poult. Res.20:322–334. https://doi.org/10.3382/japr.2010-00295.
Guleria S, Walia A, Chauhan A, Shirkot C K (2014) Genotypic and phenotypic diversity analysis of alkalophilic proteolytic Bacillus sp. associated with rhizosphere of apple trees in trans Himalayan region of Himachal Pradesh. Proc. Natl. Acad. Sci. India B. Biol. Sci. 86(2):331–341. https://doi.org/10.1007/s40011-014-0447-z
Gupta, R., Beg, Q., and Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15–32. https://doi.org/10.1007/s00253-002-0975-y.
Gurung, N., Ray, S., Bose, S., & Rai, V. (2013). A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. BioMed. Research International, 2013, Article ID: 329121. https://doi.org/10.1155/2013/329121
Hao, J., Zhang, Z., Yang, M., Zhang, Y., Wu, T., Liu, R., et al., (2022). Micronization using combined alkaline protease hydrolysis and high-speed shearing homogenization for improving the functional properties of soy protein isolates. Bioresource and Bioprocessing, 9, 1–12. https://doi.org/10.1186/s40643-022-00565-9.
Hejdysz, M., Kaczmarek, S. A., Kubi?, M., Wi?niewska, Z., Peris, S., Budnik, S., et al., (2020). The effect of protease and Bacillus licheniformis on nutritional value of pea, faba bean, yellow lupin and narrow-leaved lupin in broiler chicken diets. British Poultry Science, 61, 287–293. https://doi.org/10.1080/00071668.2020.1716303.
Heng, X., Chen, H., Lu, C., Feng, T., Li, K., & Gao, E. (2022). Study on synergistic fermentation of bean dregs and soybean meal by multiple strains and proteases. Food Science and Technology, 154:112626. https://doi.org/10.1016/j.lwt.2021.112626.
Jaswal R.K., Kocher G.S., Virk M.S. Indian J. Biotechnol. 2008;7:356–360.
Jegannathan, K. R., and Nielsen, P. H. (2013). Environmental assessment of enzyme use in industrial production—a literature review. J. Clean. Prod. 42:228–240. https://doi.org/10.1016/j.jclepro.2012.11.005
Jisha, V. N., Smitha, R. B., Pradeep, S., Sreedevi, S., Unni, K. N., Sajith, S., et al., (2013). Versatility of microbial proteases. Adv. Enzy. Res. 1, 39–51. https://doi.org/10.4236/aer.2013.13005.
Jisha, V. N., Smitha,R. B., Pradeep, S., Sreedevi, S., Unni, K. N., Sajith,S., Priji, K., Josh, M. S., and Benjamin, S. (2013). Versatility of microbial proteases. Advances in Enzyme Research, 01(03), 39-51. https://doi.org/10.4236/aer.2013.13005.
Jo, S., Kim, S., Shin, D. H., Kim, M-S (2020) Inhibition of SARS-CoV 3CL protease by favonoids. J.Enz.Inhib. Med. Chem. 35:145–151. https://doi.org/10.1080/14756366.2019.1690480
Joo, H.-S., Kumar, C. G., Park, G.-C., Paik, S. R., and Chang, C.-S. (2004). Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaete, Periserrulaleucophryna. Process Biochem. 39, 1441–1447. https://doi.org/10.1016/S0032-9592(03)00260-7.
Kamarudin, N. B., Sharma, S., Gupta, A., et al., (2017). Statistical investigation of extraction parameters of keratin from chicken feather using Design-Expert. 3 Biotech, 7, 127. https://doi.org/10.1007/s13205-017-0767-9
Kang, C., Yu, X. W., and Xu, Y. (2014). Cloning and expression of a novel prolyl endopeptidase from Aspergillus oryzae and its application in beer stabilization. J. Ind. Microbiol. Biotechnol. 42, 263–272. https://doi.org/10.1007/s10295-014-1571-8.
Karigar, C. S. and Rao, S. S. (2011). Role of microbial enzymes in bioremediation of pollutants: a review. Enzyme Res. 2011:2011:805187. https://doi.org/10.4061/2011/805187 Epub. 2011.
Kirk, O., Borchert, T. V., Fuglsang, C. C. (2002) Industrial enzyme applications. Curr.Opin.Biotechnol. 13(4):345–351. https://doi.org/10.1016/s0958-1669(02)00328-2
Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., and Shahidi, F. (2012). Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: antioxidant activity and its potential in model systems. Food Chemistry, 135, 1118–1126. https://doi.org/10.1016/j.foodchem.2012.05.080.
Kocher, G. and Mishra, S. (2009). Immobilization of Bacillus circulans MTCC 7906 for enhanced production of alkaline protease under batch and packed bed fermentation conditions. Internet J. Microbiol. 7, 359–378. https://doi.org/10.5580/2599.
Kumar C. G., Takagi H. (1999). Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol. Adv. 17, 561–594. https://doi.org/10.1016/S0734-9750(99)00027-0
Kumar G., Gomathi D., Kalaiselvi M., Uma C. (2012). A protease from the medicinal mushroom Pleurotus sajor-caju; production, purification and partial characterization. Asian Pac. J. Trop. Biomed. 2, S411–S417. https://doi.org/10.1016/S2221-1691(12)60198-1
Kumar, L. and Jain, S. K. (2018). Proteases: a beneficial degradative enzyme in therapeutic applications. Int. J. Sci. Res. Biol. Sci. 5:114–118. https://doi.org/10.26438/ijsrbs/v5i4.114118
Kumar, P. and Sharma, S. M. (2016). Enzymes in green chemistry: the need for environment and sustainability. IJAR 2(6):337–341.
Kumar, R. and Vats, R. (2010). Protease production by Bacillus subtilis immobilized on different matrices. NY Sci. J. 3(7):20–24
Kumawat, T. K., Sharma, A., Sharma, V., and Chandra, S. (2018). Keratin waste: The biodegradable polymers. In:Keratin (Miroslav Blumenberg, Ed.). IntechOpen. https://doi.org/10.5772/intechopen.79502
Lam, M. Q., Nik, Mut, N. N. and Thevarajoo, S. et al., (2018). Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech. 8:104. https://doi.org/10.1007/s13205-018-1133-2
Landbo, A. K. R., Pinelo, M., Vikbjerg, A. F., Let, M. B., and Meyer, A. S. (2006). Protease-assisted clarification of black currant juice: synergy with other clarifying agents and effects on the phenol content. J. Agric. Food Chem. 54, 6554–6563. https://doi.org/10.1021/jf060008d
Lei, H., Zhao, H., and Zhao, M. (2013). Proteases supplementation to high gravity worts enhances fermentation performance of brewer’s yeast. Biochem. Eng. J. 77, 1–6. https://doi.org/10.1016/j.bej.2013.04.016.
Li, J., Chi, Z., Wang, X., Peng, Y., & Chi, Z. (2009). The selection of alkaline protease-producing yeasts from marine environments and evaluation of their bioactive peptide production. Chinese Journal of Oceanology and Limnology, 27, 753. https://doi.org/10.1007/s00343-009-9198-8.
Li, Q., Yi, L., Marek, P., and Iverson, B. L. (2013). Commercial proteases: Present and future. FEBS Letters, 587, 1155-1163. https://doi.org/10.1016/j.febslet.2012.12.019.
Li, Y., Jiang, B., Zhang, T., Mu, W., and Liu, J. (2008). Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106, 444–450. https://doi.org/10.1016/j.foodchem.2007.04.067.
Lopez, M., and Edens, L. (2005). Effective prevention of chill-haze in beer using an acid proline-specific endoprotease from Aspergillus niger. J. Agric. Food Chem. 53, 7944–7949. https://doi.org/10.1021/jf0506535.
Machado, A. R. G. M., Teixeira, M. F. S., de Souza Kirsch, L., Campelo, M. d C. L., and de Aguiar Oliveira, I. M. (2016). Nutritional value and proteases of Lentinus citrinus produced by solid-state fermentation of lignocellulosic waste from the tropical region. Saudi Journal of Biological Sciences, 23, 621–627. https://doi.org/10.1016/j.sjbs.2015.07.002.
Maitig, A. M. A., Alhoot M. A., and Tiwari, K. (2018) Isolation and screening of extracellular protease enzyme from fungal isolates of soil. J. Pure Appl. Microbiol. 4:2059 -2067 http://doi.org/10.22207/JPAM.12.4.42
Mamo, J. and Assefa, F. (2018) The role of microbial aspartic protease enzyme in food and beverage industries. J. Food Qual. 2018:7957269. https://doi.org/10.1155/2018/7957269
Marangon, M., Van Sluyter, S. C., Robinson, E. M. C., Muhlack, R. A., Holt, H. E., Haynes, P. A., et al., (2012). Degradation of white wine haze proteins by aspergillopepsin I and II during juice flash pasteurization. Food Chem. 135, 1157–1165. https://doi.org/10.1016/j. foodchem.2012.05.042.
Miguel, Â. S. M., Martins-Meyer, T. S., Veríssimo da Costa Figueiredo, E., Lobo, B. W. P., and Dellamora-Ortiz, G. M. (2013). Enzymes in bakery: Current and future trends. In: I. Muzzalupo (Ed.), Food Industry. Rijeka, Croatia: IntechOpen. https://doi.org/10.5772/53168.
Miyaji, T., Otta, Y., Nakagawa, T., Watanabe, T., Niimura, Y., and Tomizuka, N. (2006). Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1. Lett. Appl. Microbiol. 42, 242–247. https://doi.org/10.1111/j.1472-765X.2005.01851.x.
Mótyán, J., Tóth, F., and Tozsér, J. (2013). Research applications of proteolytic enzymes in molecular biology. Biomolecules, 3, 923–942. https://doi.org/10.3390/biom3040923.
Muhammad, N. (2011). Biotechnological production of alkaline protease for industrial use. University of the Punjab, Lahore. DDC Classification: 591.1592 M 85 B.
Munawar T M, Aruna K, Swamy A (2014). Production, purification and characterization of alkaline protease from agro industrial wastes by using Aspergillus terreus (AB661667) under solid state fermentation. Int. J. Adv. Res. Eng. Appl. Sci. 3(10):12–23
Muthulakshmi, C., Gomathi, D., Kumar, D.G.,et al., (2011). Production, purifcation and characterization of protease by Aspergillus favus under solid state fermentation. Jordan J. Biol. Sci. 4(3):137–148
Nalinanon, S., Benjakul, S., Kishimura, H., and Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124, 1354–1362. https://doi.org/10.1016/j.foodchem.2010.07.089.
Naveed, M., Nadeem, F., Mehmood, T., Bilal, M., Anwar, Z.and Amjad, F. (2021). Protease-a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal. Lett. 151(2):307–323. https://doi.org/10.1007/s10562-020-03316-7
Nicolia, A., Manzo, A., Veronesi, F., andRosellini, D. (2014). An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 34, 77–88. https://doi.org/10.3109/07388551.2013.823595.
Nigam, P. S. (2013). Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3(3):597–611. https://doi.org/10.3390/biom3030597
Nisha, N., and Divakaran, J. (2014). Optimization of alkaline protease production from Bacillussubtilis NS isolated from sea water. Afr. J. Biotechnol. 13, 1707–1713. https://doi.org/10.5897/AJB2014.13652
Nongonierma, A. B., and FitzGerald, R. J. (2015). The scientific evidence for the role of milk protein-derived bioactive peptides in humans: a review. Journal of Functional Foods, 17, 640–656. https://doi.org/10.1016/j.jff.2015.06.021.
Novelli, P. K., Barros, M. M., Fleuri, L. F. (2016). Novel inexpensive fungi proteases: production by solid state fermentation and characterization. Food Chem. 198:119–124. https://doi.org/10.1016/j.foodchem.2015.11.089
Oyeleke, S., Egwim, E.C., and Auta, S. (2010). Screening of Aspergillus flavus and Aspergillus fumigatus strains for extracellular protease enzyme production. J. Microbiol.Antimicrob. 2(7):83–87.
Page, M. J., and Di Cera, E. (2008). Evolution of peptidase diversity. J. Biol. Chem. 283, 30010–30014. https://doi.org/10.1074/jbc.M804650200.
Page, M., and Di Cera E. (2008) Serine peptidases: classification, structure and function. Cell Mol. Life Sci. 65(7–8):1220–1236. https://doi.org/10.1007/s00018-008-7565-9
Pal, G. K., and Suresh, P. V. (2016). Microbial collagenases: Challenges and prospects in production and potential applications in food and nutrition. RSC Advances, 6, 33763–33780. https://doi.org/10.1039/C5RA23316J
Palsaniya, P., Mishra, R., Beejawat, N., Sethi, S., and Gupta, B. L. (2012). Optimization of alkaline protease production from bacteria isolated from soil. J. Microbiol. Biotechnol. Res. 2, 695–701.
Patel, N. S., Fung, S. M., Zanichelli, A., Cicardi, M., and Cohn, J. R. (2013). Ecallantide for treatment of acute attacks of acquired C1 esterase inhibitor deficiency. Allergy and Asthma Proceedings, 34(1), 72-77. https://doi.org/10.2500/aap.2013.34.3620.
Patel, S., Homaei, A., El-Seedide H. R., and Akhtar, N. (2018) Cathepsins: proteases that are vital for survival but can also be fatal. Biomed.Pharmacother. 105:526–553. https://doi.org/10.1016/j.biopha.2018.05.148
Philipps-Wiemann, P. (2018). Proteases—animal feed. In: Enzymes in Human and Animal Nutrition, Eds. Carlos Simões Nunes and Vikas Kumar. Salt Lake City, UT: Academic Press, 279–297.
Phoenix, D. A., Dennison, S. R., and Harris, F. (2012). Antimicrobial Peptides. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527652853
Manuel Pinelo, Birgitte Zeuner, Anne S. Meyer. 2010. Juice clarification by protease and pectinase treatments indicates new roles of pectin and protein in cherry juice turbidity, Food and Bioproducts Processing, 88, Issues 2–3, 259-265, https://doi.org/10.1016/j.fbp.2009.03.005.
Power, O., Jakeman, P., and FitzGerald, R. (2013). Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids, 44, 797–820. https://doi.org/10.1007/s00726-012-1393-9.
Prakasham, R., Rao, C. S., Rao, R. S., Rajesham, S., and Sarma, P. (2005). Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology. Appl. Biochem. Biotechnol. 120, 133–144. https://doi.org/10.1385/ABAB:120:2:133.
Proteases Market Size, Industry Analysis Report, Regional Outlook, Application Development Potential, Price Trends, Competitive Market Share & Forecast: 2020–2026.
Pushpam, P. L., Rajesh, T., and Gunasekaran, P. (2011). Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express, 1(1), 3. https://doi.org/10.1186/2191-0855-1-3.
Rao M. B., Tanksale A. M., Ghatge M. S., Deshpande V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635.
Rao, C. S., Sathish, T., Ravichandra, P., and Prakasham, R. (2009). Characterization of thermo-and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem. 44, 262–268. https://doi.org/10.1016/j.procbio.2008.10.022
Rao, M. B., Tanksale, A. M., Ghatge, M. S. et al., (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62(3):597–635. https://doi.org/10.1128/mmbr.62.3.597-635.1998
Ravikumar, G., Gomathi, D., Kalaiselvi, M., and Uma, C. (2012). A protease from the medicinal mushroom Pleurotussajor-caju: Production, purification, and partial characterization. Asian Pacific Journal of Tropical Biomedicine, 2, S411–S417. https://doi.org/10.1016/S2221-1691(12)60198-1.
Rawlings, N. D., Tolle, D. P., and Barrett, A. J. (2004). MEROPS: the peptidase database. Nucleic Acids Res. 32, D160–D164. https://doi.org/10.1093/nar/gkh071e
Ray, A. (2012). Protease enzyme-potential industrial scope. International Journal of Technology, 2, 1–4.
Razzaq, A., Shamsi S., Ali, A., Ali, Q., Sajjad, M., Malik, A., Ashraf, M. (2019) Microbial proteases applications.Front.Bioeng.Biotechnol. 7:110. https://doi.org/10.3389/fbioe.2019.00110
Rekik, H., Jaouadi, N. Z., Gargouri, F. et al., (2019) Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int. J. Biol.Macromol. 121:1227–1239 https://doi.org/10.1016/j.ijbiomac.2018.10.139
Research and Markets, (2021). The-Worldwide-Industrial-Enzymes-Industry-is-Expected-to-Reach-17-4-Billion-by-2027.
Rifaat, H. M., El-Said, O. H., Hassanein, S. M., and Selim, M. S. (2007). Protease activity of some mesophilic streptomycetes isolated from Egyptian habitats. J. Cult. Collect. 5, 16–24.
Robinson, P. K. (2015). Enzymes: Principles and Biotechnological Applications. Essays in Biochemistry, 59, 1–41. https://doi.org/10.1042/bse0590001
Rohan, M. (2014). Protease enzymes market worth $2,767 million by 2019.
Romsomsa, N., Chim-anagae, P., and Jangchud, A. (2010). Optimization of silk degumming protease production from Bacillus subtilis C4 using Plackett-Burman design and response surface methodology. Sci. Asia 36, 118–124. https://doi.org/10.2306/scienceasia1513-1874.2010.36.118
Salwan, R., and Sharma, V. (2019). Trends in extracellular serine proteases of bacteria as detergent bioadditive: alternate and environmentally friendly tool for detergent industry. Arch. Microbiol. 201:863–877. https://doi.org/10.1007/s00203-019-01662-8
Santos Aguilar dos J. G., Sato H. H. (2018). Microbial proteases: production and application in obtaining protein hydrolysates. Food Res. Int. 103, 253–262. https://doi.org/10.1016/j.foodres.2017.10.044
Sathishkumar, R., Ananthan, G., and Arun, J. (2015). Production, purification and characterization of alkaline protease by ascidian associated Bacillus subtilis GA CAS8 using agricultural wastes. Biocatal. Agric. Biotechnol. 4, 214–220. https://doi.org/10.1016/j.bcab.2014.12.003
Sawant, R. and Nagendran, S. (2014). Protease: an enzyme with multiple industrial applications. World J. Pharm. Pharm. Sci. 3:568–579.
Serna-Saldivar, S. O., and Rubio-Flores, M. (2017). “Role of intrinsic and supplemented enzymes in brewing and beer” In:the microbial enzyme technology in food applications. (eds. R. C. Ray and C. M. Rosell) Boca Raton, FL: CRC Press, 271–294.
Shankar, S., Rao, M., and Laxman, R. S. (2011). Purification and characterization of an alkaline protease by a new strain of Beauveria sp. Process Biochem. 46, 579–585. https://doi.org/10.1016/j.procbio.2010.10.013.
Sharma, A. K., Sharma, V., Saxena, J. et al., (2015). Isolation and screening of extracellular protease enzyme from bacterial and fungal isolates of soil. Int. J. Sci. Res. Environ. Sci. 3(9):0334–0340. https://doi.org/10.12983/ijsres-2015-p0334-0340
Sharma, M, Gat, Y., Arya, S. et al., (2019). A review on microbial alkaline protease: an essential tool for various industrial approaches. Indust. Biotech. 15(2):69–78 https://doi.org/10.1089/ind.2018.0032
Sharma, N. (2019). A review on fungal alkaline protease. J.Emerg. Tech.Innov. Res. 6(6):1–14. https://doi.org/10.1729/Journal.22354
Shrivastava A., Shrivastava N., Singh P. K. (2019). Chapter 34-enzymes in pharmaceutical industry. Enzy. Food Biotech. 34, 591–602. https://doi.org/10.1016/b978-0-12-813280-7.00034-7
Singh, R., Mittal, A., Kumar, M., and Mehta, P. K. (2016). Microbial protease in commercial applications. Journal of Pharmacy, Chemistry and Biological Sciences, 4, 365–374.
Singhal, P., Nigam, V., and Vidyarthi, A. (2012). Studies on production, characterization and applications of microbial alkaline proteases. Int. J. Adv. Biotechnol. Res. 3, 653–669.
Siroya, H., Patel, S., and Upadhyay, D. (2020). Industrial applications of protease: a review. Stud. Indian Place Names 40(71):224–232.
Song, P., Zhang, X., Wang, S., Xu, W., Wang, F., Fu, R. and Wei, F. (2023). Microbial proteases and their applications. Front. Microbiol. 14:1236368. https://doi.org/10.3389/fmicb.2023.1236368
Song, Y., Yan, L., Jiang, W., Xiao, W., Feng, L., Wu, P., et al., (2020). Enzyme-treated soy protein supplementation in low protein diet improved flesh tenderness, juiciness, flavor, healthiness, and antioxidant capacity in on-growing grass carp (Ctenopharyngodonidella). Fish Physiol.Biochem. 46, 213–230 https://doi.org/10.1007/s10695-019-00710-w
Soroor, M. A., Hendawy, H., Ghazy, A., Semary, N., Khalil, K., and Aziz, A. (2009). Characterization of an alkaline metalloprotease secreted by the entomopathogenic bacterium Photorhabdus sp. strain EK1. Research Journal of Agricultural and Biological Sciences, 5, 349–360.
Souza, P. M. D., Bittencourt, M. L. D. A., Caprara, C. C. et al., (2015). A biotechnology perspective of fungal proteases. Braz. J. Microbiol. 46(2):337–346 https://doi.org/10.1590/S1517-838246220140359
Souza, P. M., Werneck, G., Aliakbarian, B. et al., (2017). Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem.Toxicol. 109:1103–1110. https://doi.org/10.1016/j.fct.2017.03.055
Sumantha, A., Larroche, C., and Pandey, A. (2006). Microbiology and industrial biotechnology of food-grade proteases: A perspective. Food Technology and Biotechnology, 44, 211.
Sun, Q., Zhang, B., Yan, Q. J., and Jiang, Z. Q. (2016). Comparative analysis on the distribution of protease activities among fruits and vegetable resources. Food Chem. 213, 708–713. https://doi.org/10.1016/j.foodchem.2016.07.029.
Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11. https://doi.org/10.1016/j.molcatb.2013.01.011.
Tavano, O. L., Berenguer-Murcia, A., Secundo, F., Fernandez-Lafuente, R. (2018). Biotechnological applications of proteases in food technology. Comp. Rev. Food Sci. Food Safety 17:412–436. https://doi.org/10.1111/1541-4337.12326
Thakur, N., Goyal, M., Sharma, S. et al., (2018). Proteases: industrial applications and approaches used in strain improvement. Biol. Forum J. 10(1):158–167.
Theron, L. W. and Divol, B. (2014). Microbial aspartic proteases: current and potential applications in industry. Appl. Microbiol.Biotechnol. 98(21):8853–8868 https://doi.org/10.1007/s00253-014-6035-6
Theron, L. W., Bely, M., and Divol, B. (2018). Monitoring the impact of an aspartic protease (MpAPr1) on grape proteins and wine properties. Appl. Microbiol. Biotechnol. 102, 5173–5183. https://doi.org/10.1007/s00253-018-8980-y.
Tigabu, B. M., Agide, F. D., Mohraz, M., Nikfar, S. (2020). Atazanavir/ritonavir versus Lopinavir/ritonavir-based combined antiretroviral therapy (cART) for HIV-1 infection: a systematic review and meta-analysis. Afr. Health Sci. 20:91–101. https://doi.org/10.4314/ahs.v20i1.14
Turk, B., Turk, D., and Turk, V. (2012) Protease signaling: the cutting edge. EMBO J. 31(7):1630–1643. https://doi.org/10.1038/emboj.2012.42
Vadlamani, S., and Parcha, S. R. (2011). Studies on industrially important alkaline protease production from locally isolated superior microbial strains from soil microorganisms. International Journal of Biotechnology and Applied Sciences, 3, 102–105. https://doi.org/10.9735/0975-2943.3.3.102-105.
Vashishta, A., Ohri, S. S., Vetvickova, J. et al., (2007). Procathepsin D secreted by HaCaT keratinocyte cells—a novel regulator of keratinocyte growth. Eur. J. Cell Biol. 86(6):303–313 https://doi.org/10.1016/j.ejcb.2007.03.008
Veloorvalappil, N. J., Robinson, B. S., Selvanesan, P., Sasidharan, S., Kizhakkepawothail, N. U., Sreedharan, S., Prakasan, P., Moolakkariyil,S.J. and Sailas, B. 2013. Versatility of microbial proteases. Advances in Enzyme Research., 1: 39-51.
Wahab, W. A. A. and Ahmed, S. A. (2017). Response surface methodology for production, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA. Int. J. Biol.Macromol. 115:447–458. https://doi.org/10.1016/j.ijbiomac.2018.04.041
Wang, Y., Zhao, P., Zhou, Y., Hu, X., and Xiong, H. (2023). From bitter to delicious: properties and uses of microbial aminopeptidases. World J. Microbiol. Biotechnol. 39:72. https://doi.org/10.1007/s11274-022-03501-3.
Wu, H.-C., Chen, H.-M., &Shiau, C.-Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36, 949–957. https://doi.org/10.1016/S0963-9969(03)00104-2.
Yusuf, I., Ahmad, S. A., Phang, L. Y., et al., (2019). Effective production of keratinase by gellan gum-immobilized Alcaligenes sp. AQ05-001 using heavy metal-free and polluted feather wastes as substrates. 3 Biotech, 9, 32. https://doi.org/10.1007/s13205-018-1555-x
Zanutto-Elgui, M. R., Vieira, J. C. S., do Prado, D. Z., Buzalaf, M. A. R., de Magalhães, P. P., De Oliveira, D. E., and Fleuri, L. F. (2018). Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.11.119
Zhai, W., Li, X., Duan, X., Gou, C., Wang, L., and Gao, Y. (2022). Development of a microbial protease for composting swine carcasses, optimization of its production and elucidation of its catalytic hydrolysis mechanism. BMC Biotechnol. 22:36. https://doi.org/10.1186/s12896-022-00768-0.
Zhang, S., Xu, Z., Sun, H., Sun, L., Shaban, M., Yang, X., et al., (2019). Genome-wide identification of papain-like cysteine proteases in Gossypium hirsutum and functional characterization in response to Verticillium dahliae. Frontiers in Plant Science, 10, 134. https://doi.org/10.3389/fpls.2019.00134.
Zheng, S., Wang, H., and Zhang, G. (2011). A novel alkaline protease from the wild edible mushroom Termitomyces albuminosus. Acta Biochimica Polonica, 58, 269–273. https://doi.org/10.18388/abp.2011_2277.
![]() |
![]() |
![]() |
![]() |
![]() |