Review Article

Botanicals as Eco-Friendly Biorational Alternatives of Bio Insecticide against *Callosobruchus Maculatus* (F.) (Coleoptera: Bruchidae) Stored Pulses - A Review

K. Govindan1*, S. Geethanjali2, S. Douressamy1, M. Pandiyan3 and G. Brundha1

1Department of Crop Protection, 2Department of Crop Improvement
3Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Valavanchur – 606 753, Thiruvannamalai District, Tamil Nadu, India

*Corresponding author

Abstract

The present review article has been reviewed to know the importance of different plant products (botanicals) against *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae) the potential insecticidal botanicals in the management in storage condition and infesting the various stored pulses such as (black gram, greengram, cowpea, Bengal gram, Mung bean etc). *Callosobruchus maculatus* is one of the most serious pests brought into storage containers with harvested black gram that can cause total loss of the stored crop in a few months. The estimated post-harvest losses caused by bruchids to the pulses ranged from 30-40% within six months and when left unattended losses could be up to 100 per cent. Pulse beetles, *C. maculatus* are the most serious pests in stored legumes in majority of tropical countries. Botanicals have been used since time immemorial for protection of stored products against common pests. They act as repellents, antifeedants, toxicants and behave as natural grain protectants by behaving as chemosterilants/reproduction inhibitors or insect growth and development inhibitors. Attention has been given to the possible use of plant products or plant dry powders as promising alternatives to synthetic insecticides in controlling insect pests of stored products. Different botanicals and it is formulations have been reported time to time showing pronounced insecticidal activity, repellence to pest, oviposition deterrency, adult emergence inhibition, ovicidal, larvicidal, pupaecidal activity and feeding deterrenency based on their contact toxicity and fumigation effects. Botanicals are biodegradable, non-residual, equally effective and easily available botanicals, cost effective and non-toxic to natural enemies. Some botanicals have also been practically proved efficacious to protect the stored food commodities from the bruchids during storage conditions. Hence, they may be recommended in food security programmes as eco-friendly and biorational alternatives of synthetic insecticides providing integrated management of the losses of stored food commodities due to infestation of bruchids.

Keywords

Pulse beetle - *Callosobruchus maculatus* - Plant products - eco friendly management

Article Info

Accepted: 18 May 2020
Available Online: 10 June 2020

Introduction

Pulses are also known as “Poor man’s meat. Pulses are an important part of the vegetarian diet of Indian subcontinent, being a rich source of protein (20–30 %) and high nutritional value, offer the most practical means of solving malnutrition in our country
India has achieved first rank in World area (35%) and production (25%) under Pulses; India has an area of about 25 million ha of pulses producing 16.5 million tonnes of Pulses. This is 35% percent of the world area and 25% of world production (Rupesh et al., 2016). However, the average yield level in India is 650 kg/ha against the world average of 909 kg/ha. In Tamil Nadu, Black gram (46%) and Green gram (25%) are the major Pulse crops accounting for about 71 percent of the area under Pulses and the average yield level is far below the national average. Tamil Nadu, Black gram (46%) and Green gram (25%) are the major Pulse crops accounting for about 71 percent of the area (Vasanthakumar, 2016).

Per capita requirement of Pulses (60 gm for male and 55 gm for female) is less than the availability (42 gm). Globally, India stands first in terms of area and production of Pulses. Black gram is (4.05 lakh ha), Production (3.10 lakh tonnes) and Productivity (851 kg/ha) (Vasanthakumar, 2016). Black gram and green gram account for about 71 per cent of the area in Tamil Nadu (Vasanthakumar, 2016). Black gram Vigna mungo (L.), an important legume crop suffers losses both qualitatively and quantitatively due to the attack by bruchids in the post-harvest stages (Raghu et al., 2016).

All the pulses seeds should be stored to meet home consumption as well as for sale. Major constraints for the production and protection of pulses are pest infestation in the field and in storage. Infestation begins in the field but causes serious damage to the seeds during storage (Sanon et al., 2018). Major constraints for the production and protection of pulses are pest infestation in the field and in storage (Manju et al., 2019). Stored product pests are a great challenge in our economy because they infect and contaminate stored agricultural products and animal feed (Jacobs et al., 2019). Stored products are frequently damaged by insect pests and this may account to 5-10% in temperate zones and 20-30% in the tropics (Nakakita, 1998). The post-harvest losses and quality deterioration caused by storage pests are major problems throughout the world. Pulse beetle is the most serious pest in stored legumes in majority of tropical countries (Ratnasekera and Rajapakse, 2012).

Among the insect pests of various pulses crops, pulse beetle, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) is a cosmopolitan field-to-store pest ranked as the principal post-harvest pest, which lead to a reduction of commercial value and seed germination, in addition the grains become unfit for human consumption (Atwal and Dhaliwal, 2005). Infestation begins in the field but causes serious damage to the seeds during storage (Kayode and Ileke, 2019). Bruchids are known to inflict quantitative and qualitative losses to stored pulses (Soe et al., 2020). Several pulses is seriously infested by pulse beetles C. maculatus all over the world (Dimetry et al., 2002; Ahmed, 2010; Haefez et al., 2013).

At present, pest control measures in storage rely on the use of synthetic insecticides and fumigants, which is the quickest and surest method of pest control but it is also not advised to mix the insecticides with food grains. Their indiscriminate use in the storage, however, has led to a number of problems including insect resistance, toxic residues in food grains (Fishwick, 1988), environmental pollution (WMO, 1995) and increasing costs of application. In view of these problems together with the upcoming WTO regulations, there is a need to restrict their use globally and implement safe alternatives of conventional insecticides and fumigants to protect stored grains from insect infestations (Yusof and Ho, 1992; Subramanyam and
Hagstrum, 1995). Pesticides to control pest outbreaks remains high (Farrar et al., 2016; Vasileiadis et al., 2017).

Many synthetic insecticides have been found effective against stored product pests but proved to be hazardous to men and domestic animals. The over reliance on and non-judicious use of synthetic pesticides especially insecticides since last four decades led to wide spectrum of pests problem like pests resistance to chemicals, resurgence of pests, residues in food and soil and risks to human and animal health, besides environmental pollution (Mohapatra and Gupta, 1998). Musa and Uddin (2016) reported that many plants possess activities against stored grain pests. To solve this problem, many researchers have discovered alternative pest management products derived from plants (Isman, 2013).

The insecticidal constituents of many plant powders are due to their enrichment of phytochemicals such as alkaloids, tannins, and flavonoids (Afolabi et al., 2018). Plant products are cheap and are easily accessed by farmers and small-scale industries in the form of crude or partially purified extracts. It was indicated that mixing storage pulses and plant products such as leaf, bark, powder or extracted oils reduced the oviposition rate, inhibited the adult emergence of bruchids and decreased the seed damage rate (Onu and Aliyu, 1995; Shaaya et al., 1997; Keita et al., 2001; Tapondjou et al., 2002; Govindan and Nelson, 2007; Ahmed, 2010; Islam et al., 2013; Musa and Adeboye, 2017; Sanon et al., 2018; Manju et al., 2019; Soe et al., 2020).

In the storage period, pulse beetles are managed by using synthetic insecticides, vegetable oils, plant powder and inert materials. The use of natural plant products as insecticide is gaining importance in recent years due to ill effects of synthetic insecticides such as pest resistance, pest resurgence, and pest residues in food and pollution. The botanicals are easily biodegradable and ecologically compatible without posing environmental pollution. Hence, many scientists are doing research work on the effect of various plants on pulse beetle and other stored products insects. The research works carried out based botanicals by several scientists works reviewed and presented under the following sub headings.

Losses caused by *Callosobruchus maculatus*

Insecticidal action of botanicals on *Callosobruchus maculatus*

Effect of botanicals on oviposition, egg hatching and adult emergence of *Callosobruchus maculatus* and seed weight loss.

**Losses caused by *Callosobruchus maculatus* in pulses**

Pulses are annual and seasonal crops that can be stored for several months. However, these are at high risk of damage due to post harvest losses which can be up to 25-50 per cent (Lal and Verma, 2007). These losses are linked to insufficient and poor storage facilities, lack of knowledge of advanced technology in post-harvest pulse management and harsh climatic conditions particularly in developing countries like India (Singh and Larson, 2016). During storage, pulse beetles or bruchids attack the pulse seeds and *Callosobruchus chinensis* L. and *Callosobruchus maculatus* F. are common bruchid species. These bruchids causes about 5-10% losses during storage (Lal and Verma, 2007). These losses vary widely in different climatic conditions, pulse varieties, geographical locations and processing and storage techniques.

The pulse beetle, *C. chinensis* and *C. maculatus* are the two important species of pulse beetle. The loss caused by the pulse
beetles has been variable. The loss caused by pulse beetle *C. chinensis* was up to 55.20 per cent in chickpea (Ramsingumrao and Verma, 2003). Sridharan and Venugopal (1994) stated that *C. maculatus* could spoil the quality of black gram seeds by as much as 100 per cent. Feeding by half-mature larvae of *C. maculatus* often led to most noticeable decline in germination in pulse seeds (Yadava and Bhatnaga, 1987). Singh and Sharma (1982) observed that the damage caused by *C. maculatus* and the loss of germination was significantly higher in green gram than in black gram after five months of storage. Caswell (1973) reported that annual losses of cow pea in Nigeria due to *C. maculatus* was 2900 tons (dry weight). *C. maculatus* is one of the most serious pests brought into storage containers with harvested black gram that can cause total loss of the stored crop in a few months (Dongre et al., 1996). The estimated post-harvest losses caused by bruchids to the pulses ranged from 30-40 per cent within 6 months and when left unattended losses could be up to 100 per cent (Dongre et al., 1996; Mahendran and Mohan, 2002).

*Callosobruchus spp.* can cause damage of legume seeds up to 100% during storage in Thailand (Gbaye et al., 2011). Gujar and Yadav (1978) recorded 32.2 to 55.7 per cent loss in seed weight and 17.0 to 53.5 per cent loss in protein content. The insect spends its entire immature stage in individual legume seeds, where they cause weight loss, decrease in germination potential increase in moisture, free fatty acid levels, decrease in protein contents.

**Insecticidal action of botanicals on callosobruchus maculatus (F.)**

**Insecticidal action of piper nigrum on *C. maculates***

*Piper nigrum* L. seed is well known for its insecticidal properties against *Callosobruchus maculatus*. *Piper nigrum* have active compound called Piperine is a major active principle compound found in seeds and it is the responsible for the killing the *C. maculatus* (Swamy and Raja, 2018). Govindan et al., (2010) who found that *P. nigrum* dust formulation (Pn10D) was prepared by mixing pulverized seed powder of *P. nigrum* (10%) and fly ash (90) (Pn10D) at 4.00 percent caused cent percent mortality of *C. maculatus* after 72 hr after the treatment. Islam et al., (2013) found that *P. nigrum* 1g/kg gram seeds showed 100.00 per cent mortality to *C. maculatus*. Rajapakse, (1990) observed that *P. nigrum* 2 per cent coated seeds showed cent per cent mortality to *C. maculatus*. Hussain and Rahman, (2008) stated that *P. nigrum* seed powder causes 100 per cent mortality to *C. maculatus* within 24 hrs after treatment. Abdullah et al., (2017) observed black pepper, *P. nigrum* caused highest mortality at 24 hr (98.3%) at 48 hr after treatment (100.0%) to *C. maculatus*. Chudasama et al., (2015) refer that *C. maculatus* with 5 per cent black pepper seed extract treated with green gram very effective and controlling the *C. maculatus*. Manju et al., (2019) observed that *P. nigrum* one per cent treated green gram seeds resulted in 100 mortality to *C. maculatus* within 12 h after treatment. Shah and Mahdi, 2016 observed that *P. nigrum* seed powder highly toxic to *C. maculatus*. Mixing of 1 per cent seed powder of *P. nigrum* resulted in 100 per cent mortality two days after treatment . Several scientists reported their efficacy of black pepper, *P. nigrum* seed powder and their toxicity to adults of *C. maculatus*. (Govindan and Nelson , 2007; Shukla et al., 2009; Singh 2011; Islam et al., 2013 ; Mahdi et al., 2016; Swamy and Raja, 2018 ; Rathod et al., 2019; Emeasor and Chukwu, 2019).
Insecticidal action of *Piper guineense* on *C. maculatus*

*Piper guineense* powder (0.1g/20g) admixed with cowpea caused 100 per cent mortality to *C. maculatus* adult (Ivbijaro and Agbaje, 1986). Extract of *P. cubeda* fruit when applied topically caused 87 per cent mortality of *C. maculatus* (Su, 1990). Mbata and Ekpendu (1992) reported that *P. guineense* seed powder caused high mortality of *C. maculatus* even at low concentration. Lale (1992) reported that *P. guineense* powder at 1.5 g/20 g cowpea seeds caused 96 per cent mortality when assessed at 48 hours. The insecticidal properties of *Piper guineense* could be attributed to the presence of piperine (Oparaeke, 2006). Abdullahi and Muhammad (2004) reported that *P. guineense* at 1 g per 50 gram cowpea seed caused 100.00 per cent mortality of *C. maculatus*.

Insecticidal action of *Acorus calamus* on *C. maculatus*

*Acorus calamus* have high insecticidal activity due to active compound called β-asarone (cis-2, 4, 5-trimethoxy-1-propenylbenzene) is a sesquiterpenoid, is a major active principle found in oil of the rhizomes and it is the responsible for the killing the *C. maculatus* (Shreelaxmi et al., 2017). The rhizomes of *A. calamus* possess antibacterial, bio pesticide and antifungal properties (Rani et al., 2003). Su (1991) reported that topical application of *A calamus* oil at 30 µg per insect caused 98 per cent mortality of *C. maculatus*. The sweet flag powder mixed with red gram seeds at 1.5 and 2.5 g per 5 g seeds gave protection up to three generations of *C. maculatus* (Shivanna et al., 1994). Govindan and Nelson, (2007) stated that *Acorus calamus* rhizome powder 2 per cent showed 100 per cent mortality to *C. maculatus* two days after treatment. *Acorus calamus* rhizome acted as a contact or stomach poison, or antifeedant and repellent on the newly emerged adults of *C. maculatus* (Dhivya et al., 2019). Saranya et al., (2019) who concluded that *A calamus* hexane extract at 0.1per cent treated cowpea seeds resulted cent per cent mortality to *C. maculatus* after five days after treatment. Rathod et al., (2019) reported that *A. calamus* rhizome powder 10g/kg of green gram seeds cent per cent mortality to *C. maculatus* . Several scientists tested their efficacy of sweet flag, *A. calamus* rhizome powder against the adults of *C. maculatus* (Chanpark et al., 2003; Shukla et al., 2009; Chandel et al., 2018; Shreelaxmi et al., 2019; Dhivya et al., 2019).

Insecticidal action of *Azadirachta indica* on *C. maculatus*

The insecticidal properties of *Azadirachta indica* could be attributed to the presence of azadirachtin (Oparaeke, 2006).Cowpea seeds 20g treated with 1-3 g of dry neem (*A. indica*) seed powder protected the seed from *C. maculatus* for more than 4 months (Ivbijaro, 1983). Sowunmi and Akinnusi (1983) reported that the powdered neem seed kernels mixed with stored cowpea seeds at 1.0 to 2.0 parts per 100 parts of cowpea seeds was effective for eight months. Tanzubil et al., (1987) found that the neem fruit dust at 10 per cent w/w protected cowpea seeds for 4 months from *C. maculatus*.

Tenzubil (1991) reported that the Neemazal – W powder (500 ppm) caused 97.8 per cent mortality of *C. maculatus* adults one day after the treatment. *Melia azedarach* fruit powder was also toxic to *C. maculatus* (Lakwah et al., 1999). Singh et al., (1994) reported that both neem leaves and seed powder mixed with cowpea seeds at 3 per cent (w\w) caused 85 – 90 per cent mortality of *C. maculatus*. Kumari and Kumar (1998) also observed that neem leaves and seed powder mixed with cowpea
seeds at 3 per cent w/w caused 85 – 90 per cent mortality of C. maculatus adults. Neem oil 2 per cent was very effective against C. maculatus (Paneru and Sivakoti, 2001). Akunne et al., (2013) who concluded A. indica leaf powder was also toxic to C. maculatus. Neem leaf powder protection from pulse beetle infestation in mung bean (Ahmad et al., 2015).

**Insecticidal action of others botanicals against C. maculatus**

Several researchers tested, documented the various plant species against C. maculatus and presented here. Banja and Maboganje (1999) reported that leaves and seed extracts of *Jatropha curcas* was most effective against C. maculatus. The seed powder of *Dennettia tripetala* 1 per cent caused 100 per cent mortality of C. maculatus with in 72 hours (Umoetok and Okokon, 1999). Eltayeb and Elhag (2000) observed that one per cent crude extract of *Rhazya strica* leaves showed 82 per cent repellency for C. maculatus leaves.

Application of *Chenopodium ambroisoides* 5.0 per cent extract caused 54 per cent mortality of C. maculatus adults (Kehinde et al., 2002). Insecticidal activity of *Tephrosia vogelli* against C. maculatus was reported by Sara (2004). Mollah and Islam (2005) reported that leaf, stem and root of *Murraya paniculata* extracted in four different solvents viz., petroleum ether, ethyl acetate, acetone and methanol were toxic to C. maculatus. Ratnasekera and Rajapakse, (2012) found that extract of A. squamosa was toxic to adults beetles of C. maculatus.

Islam et al., (2013) who observed that the black pepper was effective inhibit the oviposition in C. maculatus. The leaf powder of *Ocimum gratissimum* was more effective in causing C. maculatus mortality (Felicia et al., 2013). Vojoudi et al., (2014) showed that *Mentha pulegium* essential oil was more effective against C. maculatus. Black pepper powder possesses high anti-ovipositional potential (Upadhay and Jaiswal, 2007; Ahmed et al., 2011). Kosini and Nukenine (2017) which reported that *Gnidia kaussiana* leaf powder highest mortality to C. maculatus. Mojisola et al., (2016 ) stated that *Citrus sinensis* was able to achieve 100 per cent mortality C. maculatus at the third hour of exposure. Fotso et al., (2018) observed that *H. welwitschii* leaves powder caused highest mortality to C. maculatus in stored cowpea. *Eugenia aromatica* @ 1 g/20 g admixed cow pea seeds and caused 100 per cent mortality with in 24 hrs (Jacobs et al., 2019). Manju et al., (2019) are found that all the twelve botanical powders were significantly effective against C. maculatus insect. Antifeedant deterrent effect showed *Alium sativum* (61.6%) and *Mondora myristica* (64.9%) to C. maculatus (Egwunyenga and Ake, 2019).

Edwin and Anigboro (2019) stated that A. sativum and M. myristica caused a repellency of 50.3 and 49.9 45.5 per cent to C. maculatus. Leaves extract of *Hyptis suaveolens*, *Alstonia boonei*, and *Tephrosia vogelii* were tested and highly toxic to C. maculatus (Ehimemen and Salisu, 2020).

**Effect of botanicals on oviposition, egg hatching and adult emergence of callosobruchus maculatus (F.) and seed weight losses**

**Oviposition**

Eltayeb and Elhag (2000) observed that *P. nigrum* reduced the egg laying by C. maculatus. Kehinde et al., (2002) reported the
ovicidal and oviposition deterrent activities of Chenopodium ambroisoides. *N. tabacum, T. vogelli* and *Securidaca longepedonculata* significantly reduced the number of progeny of *C. maculatus* (Boeke et al., 2004). Rajapakse and Vantmden (2004) studied the effect of oil of corn, groundnut, sunflower and sesame and found that they significantly reduced oviposition of *C. maculatus*. Leaf powder of *Momordica charantia* prevented loss of weight of stored cowpea caused by *C. maculatus* (Sara et al., 2004). Rajapakse and Vantmden (2004) reported that powder of *C. citratus, Cinnamomum camphora* and *Derris indica* reduced egg laying by *C. maculatus*. Sara et al., (2004) observed the with *Ocimum basilicum* leaf powder suppress the eggs of *C. maculatus*.

Govindan et al., (2010) who found that *P. nigrum* dust formulation (Pn10D) was prepared by mixing pulverized seed powder of *P. nigrum* (10%) and fly ash (90) (Pn10D) at 4.00 percent was most effective in reducing the oviposition of *C. maculatus*. Singh, (2011) reported that garlic clove powder acted as best ovipositional deterrent against *C. maculatus* in chickpea. Idoko and Adesina (2012) who reported that *P. guineense* caused the mortality of *C. maculatus* adults and eventual suppression of progeny emergence due to contact toxicity of the powder. Oils of *Ocimum sanctum* at 1.5 μl completely inhibited egg laying of *C. maculatus* (Ratnasekera and Rajapakse, 2012). Devi and Devi (2013) reported the reduction in oviposition of *C. maculatus* in gram treated with neem powder. Gupta et al., (2015) who reported the efficacy of neem leaf powder in reducing oviposition against *C. maculatus* on green gram seeds.

Manju, et al., 2019 stated that *Piper nigrum* 1 per cent seed powder treated green gram seeds sowed highest percentage of oviposition deterrence (71.6 % ) in *C. maculatus*. Sathyaseelan et al., (2008) who observed that *Ocimum canum* leaf powder at 5 per cent treated green seeds and caused 68.70 per cent mortality to *C. maculatus*. The *Eugenia aromatica* @ 1 g/20 g admixed cow pea seeds complete inhibit the oviposition in *C. maculatus* (Jacobs et al., 2019). Niranjana and Karunakaran (2019) stated that *A. indica* 10 per cent leaf powder was found to be the very effective reducing the oviposition by *C. maculatus*. Ehimemen and Salisu, (2020) who reported that leaves extract of *Hyptis suaveolens*, *Alstonia boonei* and *Tephrosia vogelii* inhibit the egg laying in *C. maculatus*.

**Adult emergence**

Raja et al., (2000) observed that cowpea seeds treated with 0.5 and 1 per cent methanol and aqueous extract of *Vitex negundo* significantly reduced the number emergence of F1 adults of *C. maculatus*. Tapondijou et al., (2002) reported that powdered leaves of
Chenopodium ambrosiodes inhibited F1 progeny production and adult emergence. Abdullahi and Muhammad (2004) reported that P. quineense fruit powder at 1g per 50 g cowpea seed inhibited the oviposition by 26 per cent and adult emergence by 50 per cent in case of C. maculatus. Swella and Mushobozy (2007) who individually reported Annona senegalensis seed powder had high toxic to oviposition and progeny development by protecting cowpea seeds against the C. maculatus infestation. Govindan and Nelson (2008) who reported lower adult emergence of C. maculatus in seeds treated with sweet flag powder. Piper guineense reduced adult emergence of C. maculatus (Emeasor and Chukwu, 2019).

Plant powders causes sterility to male beetle, thus made the females produced non-fertile eggs (Ojianwuna and Umoru, 2010). Govindan et al., (2010) who found that P. nigrum dust formulation (Pn10D) seed powder of P. nigrum (10%) and fly ash (90) (Pn10D) at 4.00 percent was most effective in reducing the adult emergence of C. maculatus. Neem leaf powder (A. indica) applied @ 1.5mg/100g seeds of mungbean decreased total progeny by 38 per cent (Ahmad et al., 2015). Oils of Ocimum sanctum at 1.5 μl completely inhibited adult emergence of C. maculatus. (Ratnasekera and Rajapakse, 2012). Rupesh et al., (2016) reported that Neem oil @10ml/kg of pigeononpea seeds completely inhibited oviposition and adult emergence of C. maculatus.

Piper nigrum 2g of powder admixed with 20 g of mung bean seeds resulted complete inhibit the adult beetle emergences of C. maculatus (Emeasor and Chukwu, 2019); Manju et al., 2019; Rathod et al., 2019). Kaur et al., (2019) who stated that neem leaf powder 5 g / 100 g of pea seed was highly effective and inhibit the adult beetle emergence. Swamy and Raja (2018) stated that mixing of black pepper powder @ 0.1, 0.2 and 0.3 per cent treated seeds of green gram were also found significantly effective as very negligible numbers (0.33, 1.0 and 8.33 adults respectively) emerged. The Acorus calamus rhizome powder @ 10g/kg of green gram treated seeds results showed that no emergence of C. maculatus (Rathod et al., 2019). Jacobs et al., (2019) who found that Eugenia aromatica @ 1 g/20 g admixed cow pea seeds complete inhibit the adult emergence of C. maculatus. Reduced no adult emergence with O. sanctum leaf powder (Ratnasekera and Rajapakse, 2010).

Reduction in the F1 progeny emergence of C. maculatus in the Bambara groundnut treated with Ocimum canum powder (Kosini et al., 2015). Chudasama et al., (2015) observed the maximum percentage (78.45%) adult emergence reduction was reported in custard apple seed extract. Mahama et al., (2018) reported that significant reduction in the progeny F1 production of C. maculatus on seeds treated with Eucalyptus camaldulensis leaf extracts on Bambara groundnut grains.

Saranya et al., (2019) reported that A calamus hexane extract at 0.05, 0.07, 0.09 and 0.1 per cent concentrations treated cow pea seeds were no progeny development of C. maculatus. Niranjana and Karunakaran (2019) stated that Annona squamosa 10 per cent could be considered as potential plant extracts against C. maculatus. Leaves extract of Hypitis suaveolens, Alstonia boonei and Tephrosia vogelii the reduced the number emergence of F1 adults of C. maculatus (Ehimemen and Salisu, 2020).

Seed weight loss

Aslam et al., (2002) found lower weight loss when chickpea was treated with clove and balck pepper extract. Swella and Mushobozy
(2007) refer that Black pepper (Piper spp.) powder and coconut oil showed good potential in protecting cowpea seeds against bruchid damage. Govindan et al., (2010) who found that P. nigrum dust formulation (Pn10D) seed powder of P. nigrum (10%) and fly ash (90) (Pn10D) at 4.00 percent was most effective against C. maculatus and reducing the seed weight loss in stored black gram. Dauda et al., (2012) who stated that Alium sativum oil as grain protectant in cowpea and reduced seed weight loss and up to three months of storage. Udo and Harry (2013) reported that groundnut oil protecting cowpea up to six months of storage period. The botanicals as Curcuma longa, Zingiber officinale and Z. officinale had effective and reduced the seed weight loss in cowpea (Asawalam and Anaeto 2014).

Poornasundari and Daniel (2015) found black pepper powder at doses of 0.5, 1.0, 1.5 and 2.0 g mixed with 40 g of green gram as effective and protection up to six months of storage period. Custard apple leaf powder 2 per cent coated with black gram seeds results showed less infestation of pulse beetle (Suthar and Bharpoda, 2016).

Swamy and Raja (2018) stated that mixing of black pepper powder @ 0.1, 0.2 and 0.3 per cent treated seeds of green gram very effective and reducing the seed weight loss. Jumbo, et al., (2018) showed that oil dosage of Clove and Cinnamon proportionately reduced the losses in bean weight caused by C. maculatus.

The green gram seed damage due to pulse bruchids was nil in pepper powder @ 0.4 and 0.3 per cent treated seeds (Swamy and Raja, 2018). Rathod et al., (2019) who stated that black pepper powder causes less infestation and least weight loss noticed. Kaur et al., (2019) stated that no seed damage and weight loss was recorded in pea seeds treated with sweet flag powder at 3g/100g and 5g/100g doses. Minimum grain loss was noted with black pepper @ 1.00 g/kg (Islam et al., 2013). Minimum weight loss percentage was observed in the cowpea seeds treated with custard apple seed extract at 5per cent Chudasama et al., (2015).

Yusuf, et al., (2019) stated that cowpea seeds treated with A. indica, P. guineense, C. citratus, ranging between 1.88 and 2.09 per cent seed weight loss Niranjana and Karunakaran (2019) stated that A. indica 10 per cent leaf powder was reducing the seed weight loss in black gram. Saranya et al., (2019) stated that A. calamus hexane extract at 0.05, 0.07, 0.09 and 0.1per cent concentrations treated cow pea seeds were no seeds weight loss recorded. Leaves extract of Hyptis suaveolens, Alstonia boonei and Tephrosia vogelii tested against C. maculatus and protect the stored cowpea seeds from its infestation (Ehimemen and Salisu, 2020).

After reviewing findings of several researchers it can be concluded that piper nigrm , Piper guineense Acorus calamus, Azadirachta indica and other many plants have insecticidal properties had very effective against Callosobruchus maculatus viz., insecticidal action (mortality), oviposition, adult emergence and seed weight loss. Insecticidal toxicity of plant and their alkaloids responsible and found be toxic pulse beetle C. maculatus.

Many authors have evaluated the insecticidal (grain protectant) properties of plant products on various species of stored product insect pests. The results clearly show that it is possible to develop methods for grain protectants with reduced use of synthetic chemical insecticides.

The main advantages of botanical pesticides are ecofriendly, easily biodegradable, nontoxic to non-target organisms, and many
plant-derived natural products acting against insects could be produced from locally available raw materials. They have been numerous botanical pesticides studied at the laboratory level. Therefore, the resource poor farmers can use botanicals controlling pulse beetle is stored black gram as they may not afford to buy chemical pesticides due to high cost. Furthermore, the use of botanical pesticides to control pulse beetle is an appropriate strategy to avoid environmental pollution and other hazards, since the chemical pesticides are used by farmers and in agro industries currently. The insecticides of plant origin could be exploited for the development of novel molecules with highly precise targets for sustainable insect pest management in stored grain.

Acknowledgements

This review article contains information gathered from numerous published resources, and thus we would like to extend our appreciation to all authors of the references used in this manuscript.

References


Kayode, D. and Ileke, 2019. Insecticidal toxicity of two bruchid-resistant cowpea cultivar powders as cowpea seed protectants against Callosobruchus maculatus (Fab.) (Coleoptera: Chrysomelidae), Food Quality and Safety, 2019, 3, 35–39

Kehinde, A., Kamabonta and Francis Okogbue. 2002. Chenopodium ambrosioides (Chenopodiaceae) as grain protectant for


chrysomelidae) on different host grains, *J Sc EUSL*, 10 (1) 1-14.


