Evaluation of the Effect of GnRH Analogue, Progesterone and Tolfenamic Acid on Serum Progesterone Profile and Conception Rate in Repeat Breeding Crossbred Cattle

Sudhanshu Pratap Singh¹*, Ankesh Kumar², Prakrutik Prafulchandra Bhavsar³, Mukesh Sahu⁴, Praveen Kumar¹ and Sushil Kumar⁵

¹Department of Veterinary Gynaecology and Obstetrics, ²Department of Veterinary Clinical Complex, ³College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
⁴Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Animal Sciences, G. B. Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand, India
⁵Corresponding author

Abstract

Secretion of prostaglandin F₂α at the time of maternal recognition of pregnancy leads to embryonic loss. Early embryonic losses are one of the important causes of repeat breeding which increases the calving interval and leads to economic losses to farmers. Non-steroidal anti-inflammatory drugs inhibit the synthesis of PGF₂α. The present study was designed to study the effect of treatment by GnRH analogue - Buserelin acetate, Progesterone (P₄) and Tolfenamic acid on 32 repeat-breeding crossbred cattle aged 3-8 years. All the animals were randomly divided into 4 equal groups (n=8). Group 1 was taken as positive control i.e. inseminated on spontaneous estrous without any therapy. Group 2 animals were treated with injection Buserelin acetate @ 20 µg intramuscular (IM) at the time of artificial insemination (AI). Group 3 animals were treated with inj. Buserelin acetate @ 20 µg intramuscular at the time of AI followed by Injection P₄ @100mg IM on days 4, 5, 6 after AI. Group 4 animals were treated with inj. Buserelin acetate @ 20 µg intramuscular at the time of AI followed by Injection P₄ @100mg IM on days 4, 5, 6 and inj. Tolfenamic acid @4 mg/kg body weight IM on days 16, 17, 18 after AI. Blood samples were collected from all the cows at day 0, 7, 16, 17, 18 of the estrous cycle for the study of serum progesterone profile. The conception rate observed in groups 1, 2, 3 and 4 were 12.5%, 37.5%, 50% and 75% respectively. Highest conception was observed in group 4 in which, combinations of Buserelin acetate, Exogenous P₄ and Tolfenamic acid was administered. The study concluded that combination of Buserelin acetate, Exogenous P₄ and Tolfenamic acid therapy helps to maintain the P₄ level and significantly increases the conception rate by 6 times than control group.

Keywords
Repeat breeders, Progesterone, Tolfenamic acid, Conception rate

Article Info
Accepted: 23 April 2020
Available Online: 10 May 2020

Introduction

The bovine conceptus produces interferon-tau (IFNτ) which prevents luteolysis. In addition to that functional corpus luteum (CL) produces more progesterone which is essential to supports pregnancy (Spencer and Bazer, 2002). There are two crucial periods of bovine pregnancy. The first period is the first week of after breeding and second is day 8 to

2630
28, when maternal recognition of pregnancy (MRP) takes place. Approximately 32% of total embryonic loss occurs in this period (Wiltbank et al., 2016). This leads to a repeat of oestrus. Repeat breeding (RB) is a considerable problem in cattle breeding which leads to large economic losses due to more inseminations, increased calving interval and increased culling rates. Repeat breeding has been defined as the failure to conceive from 3 or more regularly spaced services in the absence of detectable abnormalities (Bartlett et al., 1986).

Several factors like nutritional stress (Bender et al., 2014), heat stress (Sakatani, 2017), transportation stress (Merrill et al., 2007) or other stress promotes secretion of prostaglandin F_{2a} from the uterine endometrium. This can cause lysis of the functional corpus luteum and leads to early embryonic death (Hockett et al., 2004). The two cyclooxygenase (COX) enzymes convert arachidonic acid into prostaglandin- H2 which is further converted into PGF$_{2a}$ through the enzyme prostaglandin-F-synthase. The NSAIDs exhibits anti-inflammatory activity mainly based on the inhibition of the cyclooxygenase (COX) enzyme, results in inhibition of prostaglandin synthesis (Malm and Boriisch, 2015).

Several studies evaluated the effects of NSAIDs like Flunixine meglumine (Kasimanickam et al., 2019, 2018) and meloxicam (Amiridis et al., 2009; McDougall et al., 2016). Administration of the NSAID tolfenamic acid has significantly improved embryo transfer rate and pup delivery in mice (Schlapp et al., 2015).

Administration of GnRH or GnRH analogue before artificial insemination induce preovulatory LH (luteinizing hormone) surge which controls ovulation, or post inseminations with supplementation of exogenous P$_4$ to support early embryonic development (Amiridis et al., 2009). At days 3 to 5 post-ovulation, the embryos usually enter the uterus, undergoing genomic activation and increases in P$_4$ concentration; therefore, this may be a physiologically important time in the cattle, so the administration of a low dose of P$_4$ on days 4, 5 and 6 of the oestrous cycle increase the conception rate among repeat breeder cattle (Ferguson et al., 2012).

This extends the life span of the bovine corpus luteum (CL) so this is one of the strategies aimed at reducing embryo loss by inhibiting the PGF$_{2a}$ in the endometrium during the critical period (Binelli et al., 2001; Pugliesi et al., 2011). Inhibition of PGF2α enhances the CL lifespan and avoiding detrimental and toxic effects of PGF2α on the embryo (Binelli et al., 2001).

Materials and Methods

Preparation of animals before commencement of treatment

The study was conducted on 32 apparently healthy, 3-8 years old repeat breeding crossbred cattle. All animals were dewormed with Fenbendazole @ 7.5 mg per kg body weight 60 days prior to the commencement of experiment and they were supplemented with 40 gm mineral mixture daily prior to experiment.

Grouping of animals and treatment

Selected animals were randomly divided into four groups (each group containing 8 animals). In group 1, animals were inseminated on spontaneous estrous without any treatment, in group 2, animals were treated with injection Buserelin acetate @ 20 µg IM at the time of artificial insemination (AI), in group 3, animal were treated with
injection Buserelin acetate @ 20 µg IM at the
time of AI followed by Injection P₄ @100mg
IM on days 4,5,6 after AI and in group 4,
animals were treated with injection Buserelin
acetate @ 20 µg IM at the time of AI,
Injection P₄ @100mg IM on days 4,5,6 and
Inj. Tolfenamic acid @ 4 mg/kg body weight
IM On days 16,17,18 after AI. All the animals
were inseminated on spontaneous heat (Table
1).

Blood collection and hormonal assay

Assuming estrous day as day 0, blood
samples was collected in clot activator from
all the cows at day 0, 7,16,17,18 of the cycle
to harvest for hormonal estimation (Table 1).
Level of P₄ in blood was estimated by Radio-
Immuno Assay (RIA) Progesterone essay kit
(M/S Beckman Coulter, Brea, CA) catalogue
no. IM 1188 as per the suggested protocol. In
brief all reagents were brought to the room
temperature (20-25°C) before assaying.

For estimation of serum progesterone, 50µl
standard and 50µl serum sample were taken
into antibody coated tubes. 500µl ¹²⁵I-
labelled serum progesterone was added to
each antibody-coated tube.

Two additional non-coated tubes were
prepared for total activity computation
containing 500µl tracer (¹²⁵I-labelled serum
progesterone) and was set-aside until
counting. The contents of the tubes were
mixed with a vortex and incubated for 1 hr for
serum progesterone estimation at room
temperature, while continuously shaking
(300-350 rpm).

The incubation mixture was carefully
aspirated while aspirator tip touched the
bottom of the antibody coated tube so that all
the liquid was removed. The radioactivity was
measured with SR-300 fully automatic
gamma counter.

Statistical analysis of the effect of different
treatments between the groups and within the
group on different days and serum P₄
concentration in of repeat breeder cows was
studied by repeated measures ANOVA. The
multiple comparisons between group, day and
interaction for different parameters were done
by using Tukey test at 5% level of
significance. The analysis was done using
JMP 9.0 software.

Results and Discussion

Conception rate

The conception rates observed in the present
work in all four groups were 12.5%, 37.5%,
50% and 75% respectively in group 1, group
2, group 3 and group 4. The highest
conception rate was observed in group 4.

In a similar study by Amiridis et al., (2009)
reported highest conception rate of 33.76 % in
repeat breeder cows which is lower
conception rate than the present study.
(Aguiar et al., 2013) they reported conception
rate of 66.70% with the use of meloxicam- a
NASID and this is comparable with the
present finding while they obtained 49%
Conception rate in the control group which is
higher than the present report. Archbald et al.,
(1993) used GnRH at the time artificial
insemination and reported the conception rate
ranging from 33% - 40% this is comparable to
the present finding (Fig. 2).

While using progesterone in a low dosage by
(Ferguson et al., 2012) in an experiment
observed conception rate of 45% which slight
lower than the present finding.

Highest conception rate in present study was
observed in group 4 i.e. 75%, where treatment
had been given with combinations of GnRH
analogue (Busereline acetate), Exogenous
progesterone and non-steroidal anti-
inflammatory drug (Tolfenamic acid). All the treatments were given at different days of estrus cycle when the chances of conception failure are more i.e. Buserelin acetate on day 0 when time of ovulation depend on concentration of LH which is govern by release of GnRH, then Progesterone injected on day 4, 5 and 6 when embryo travels from horn to uterus and Tolfenamic acid was given on day 16, 17 and 18 when MRP process are going on.

Least conception rate observed in group 1 in which no treatment was given and kept as a control. The combined administration of GnRH, Progesterone, and NSAID was effective in treatment of the repeat breeder cows.

Serum progesterone profile

In group 1

The mean total P4 concentration on day 0, 7, 16, 17 and 18 was 0.31±0.06, 2.31±0.27, 3.99±0.23, 4.63±0.29 and 4.40±0.31 ng/ml, respectively. The significant (p<0.05) differences were observed between days, significantly higher level were observed on days 16, 17 and 18 compared to days 0 and 7.

In group 2

The mean total P4 concentration on day 0, 7, 16, 17 and 18 was 0.37±0.06, 2.47±0.27, 5.06±0.47, 6.37±0.40 and 7.08±0.52 ng/ml, respectively. The significant differences were observed between days, significantly (p<0.05) higher level were observed on days 17 and 18 compared to days 16, 7 and 0. The non-significant difference was observed among days 16, 17 and 18 (Fig. 1).

In group 3

The mean total P4 concentration on day 0, 7, 16, 17 and 18 was 0.42±0.05, 2.81±0.23, 4.67±0.46, 5.69±0.49 and 6.44±0.58 ng/ml, respectively. The significant differences were observed between days, significantly (p<0.05) higher level were observed similarly as in previous group on days 17 and 18 compared to days 16, 7 and 0.

In group 4

The mean total P4 concentration on day 0, 7, 16, 17 and 18 was 0.44±0.06, 2.71±0.22, 5.14±0.48, 7.13±0.46 and 8.41±0.54 ng/ml, respectively. The significant differences were observed between days, significantly higher level were observed similarly as in previous group on days 17 and 18 compared to days 16, 7 and 0 (Table 2).

The significantly (p<0.05) highest level of progesterone was observed on day 18 in group 4 and group 2 among all the treatment groups and levels were 8.41±0.54 and 7.08±0.52 ng/ml respectively. The rising trend of serum progesterone was observed in all the treatment groups on days 0, 7, 16, 17 and 18 and significant differences (p<0.05) was observed on days 17 and 18 between groups.

On the day 17 and 18 of group 4, on the administration of tolfenamic acid the mean serum progesterone concentration was 7.13±0.46 and 8.41±0.54 ng/ml respectively which was significantly higher between the treatments which might have luteotropic effect on corpus luteum, leading to increase in serum progesterone concentration.

The similar observations were reported by (Jaroszewski et al., 2009; Maithani, 2017; von Krueger and Heuwieser, 2010). The reason of this highest serum progesterone levels in group 4 of the present experiment was the combine administrations of GnRH analogue, Progesterone and Tolfenamic acid.
Table 1 Dose and dosage schedule of drugs in different treatment group

<table>
<thead>
<tr>
<th>Cattle groups (N= 8 in each group)</th>
<th>Treatment</th>
<th>Day of treatment</th>
<th>Day and time of blood collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-1 (Control)</td>
<td>No treatment</td>
<td>No treatment</td>
<td>At days 0, 7, 16, 17, 18 of estrous cycle</td>
</tr>
<tr>
<td>Group- 2</td>
<td>Inj. Buserelin Acetate @ 20 µg IM</td>
<td>At the time of AI</td>
<td>At days 0, 7, 16, 17, 18 of estrous cycle</td>
</tr>
<tr>
<td>Group -3</td>
<td>Inj. Buserelin Acetate @ 20 µg IM</td>
<td>At the time of AI</td>
<td>At days 0, 7, 16, 17, 18 of estrous cycle</td>
</tr>
<tr>
<td></td>
<td>Inj. Progesterone@100mg IM</td>
<td>On days 4,5,6 after AI</td>
<td></td>
</tr>
<tr>
<td>Group -4</td>
<td>Inj. Buserelin acetate @ 20 µg IM</td>
<td>At the time of AI</td>
<td>At days 0, 7, 16, 17, 18 of estrous cycle</td>
</tr>
<tr>
<td></td>
<td>Inj. Progesterone@100mg IM</td>
<td>On days 4,5,6 after AI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inj. Tolfenamic acid @4 mg/kg b. wt. IM</td>
<td>On days 16,17,18 after AI</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Mean (± SE) serum P4 concentration (ng/dl) in different groups on 0, 7th, 16th, 17th and 18th day of estrous cycle in repeat breeder cows

<table>
<thead>
<tr>
<th>Group</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 16</th>
<th>Day 17</th>
<th>Day 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.31±0.06I</td>
<td>2.31±0.27H</td>
<td>3.99±0.23FG</td>
<td>4.63±0.29EF</td>
<td>4.40±0.31EF</td>
</tr>
<tr>
<td>2</td>
<td>0.37±0.06I</td>
<td>2.47±0.27H</td>
<td>5.06±0.47DEF</td>
<td>6.37±0.40BCD</td>
<td>7.08±0.52AB</td>
</tr>
<tr>
<td>3</td>
<td>0.42±0.05I</td>
<td>2.81±0.23GH</td>
<td>4.67±0.46EF</td>
<td>5.69±0.49CDE</td>
<td>6.44±0.58BC</td>
</tr>
<tr>
<td>4</td>
<td>0.44±0.06I</td>
<td>2.71±0.22GH</td>
<td>5.14±0.48CDEF</td>
<td>7.13±0.46AB</td>
<td>8.41±0.54 A</td>
</tr>
</tbody>
</table>

The values bearing the different superscripts across the rows and columns differ significantly from each other, (P<0.05)

Table 3 Conception rate in different group of repeat breeder cows after treatment

<table>
<thead>
<tr>
<th>Particulars</th>
<th>GROUP-1</th>
<th>GROUP-2</th>
<th>GROUP-3</th>
<th>GROUP-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of animal</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pregnant animal</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Conception rate</td>
<td>12.5%</td>
<td>37.5%</td>
<td>50%</td>
<td>75%</td>
</tr>
</tbody>
</table>
The increasing of serum progesterone was observed in all treatment groups simultaneously increasing in conception rate. Since, higher concentration of progesterone in early pregnancy directly related to embryonic growth rate and pregnancy. The significant increase in progesterone was observed in group 4 where combined administrations of Buserelin acetate, Progesterone and Tolfenamic acid were given. Hence, it is concluded that combination therapies of Buserelin acetate, Progesterone and Tolfenamic acid may be beneficial in the treatment of repeat breeding problems.

References

Amiridis, G.S., Tsiligianni, T., Dovolou, E., Rekkas, C., Vouzaras, D., Menegatos, I., 2009. Combined administration of gonadotropin-releasing hormone, progesterone, and meloxicam is an effective treatment for the repeat-

Maithani, M., 2017. Studies on improving
conception following embryo transfer in cattle. G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand).

How to cite this article: