Inheritance of Flower Colour of Underutilized Tuberous Legume Crop Yam Bean (Pachyrhizus erosus L. Urban)

Kalidas Pati*, V. B. S. Chauhan, V. V. Bansode and M. Nedunchezhiyan

Regional Centre, ICAR-Central Tuber Crops Research Institute, Bhubaneswar, 751019, Odisha, India
*Corresponding author

ABSTRACT

The inheritance pattern of flower colour in underutilized tuberous legume crop yam bean was studied by utilizing a white flower colour line (YBWF-1) and two purple flower colour lines (RM-1 and L No-3). The F1 and F2 population along with parental lines were evaluated to study the inheritance pattern of the flower colour. All the F1 hybrids showed purple colour in both the crosses and in the F2 segregation generation, the observed distribution of the flower colour fitted the expected Mendalian ratio of 3 (Purple flower colour):1 (white flower colour). The segregation of flower colour suggested monogenic dominant control of purple flower colour in yam bean using white flower colour genotype YBWF-1. This is the first report of flower colour inheritance pattern in yam bean.

Keywords
Yam bean, Underutilized crop, Flower colour, Inheritance

Article Info
Accepted: 05 April 2020
Available Online: 10 May 2020

Introduction

Yam bean (Pachyrhizus erosus L.Urban) is a tuberous legume crop commonly known as Mishrikand, Sank alu or Sankeshalu in India, primarily grown for its tuberous roots. Now a days, it is gaining importance due to its high productivity, nutritional value and wider adaptability. Yam bean tuber rich in protein (0.72 g) (USDA, 2016) and teste resemble to water chest nut. In India, it is commonly grown in Bihar, Bengal, Odisha, eastern Uttar Pradesh and North-Eastern part of India. The chromosome number of P. erosus is 2n=2x=22 (Santayana et al., 2014) and the genome size is estimated to be range from 572 to 597 Mbp (Pati et al., 2019). Yam bean produces bisexual flower and self-pollinating nature. The species is characterized by the lack of hairs on the petals and inflorescence axis of complex racemes arising from the axil of the leaf (Sørensen, 1996). The common flower colour in yam bean is purple, but some white flower lines also available in the species. The flowering begins 58-68 days after sowing, and lasted 92-103 days. The
stigma was found to become receptive at 12 hours before and to last for 18 hours after opening of the flower. The anthers generally dehisced 8-12 hours before opening of the flower (Prasad and Prakash, 1973). Flower colour was less influenced by environmental factors, hence, it can be used as a marker for species or varietal identification. Morphological markers are visually characterized phenotypic traits like flower colour and in terms of ornamental value the appealing of flower colour are useful for plant breeders (Golkar et al., 2010). Best of our knowledge no work has been carried out for the flower colour inheritance in yam bean. Therefore, the objective of this study was to identify the inheritance pattern and gene that control flower colour in yam bean.

Materials and Methods

This experiment was conducted at research farm of ICAR-Central Tuber Crops Research Institute, Regional Centre, Bhubaneswar, Odisha, CAR-Central Tuber Crops Research Institute, Regional Centre, Bhubaneswar, Odisha, India during 2016 -2018. Crosses were made between one white flower colour line (YBWF-1, Fig. 1) with two purple flower colour lines (RM-1 and L No-3, Fig. 1). The F1(YBWF-1 × RM-1 and YBWF-1 × L No-3) progeny was selfed to obtain the F2 generation. All pollinations were made by hand. Seeds of the parental lines, F1 and F2 were sown during end of August 2016, 2017 and 2018. Seeds were grown in rows with a spacing of 60 cm between rows and 30 cm between plants. All the recommended agronomic package of practices along with plant protection measures was followed to raise a successful crop of yam bean. Plants from each generation were evaluated for flower colour inheritance at flowering stage. Total number of plants were counted in each category and subjected to Chi-square (χ^2) test for their goodness of fit to monogenic inheritance ratios, as suggested by (Panse and Sukhatme, 1985).

Results and Discussion

The inheritance of flower colour was studied based on the Mendelian model, classifying purple flower and white flower plants. All the crosses (YBWF-1 × RM-1 and YBWF-1 × L No-3) F1 shows purple flower colour which indicated that purple flower colour is dominant over the white flower colour. The dominant trait of purple flower colour over white flower colour was further confirmed by F2. In the ‘YBWF-1 × RM-1’ cross 96 plants were producing purple flower and 24 plants producing white colour flower. The χ^2 values indicated a good-fit to a 3:1 ratio ($\chi^2 = 1.60; P= 0.20$, Table 1).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Chi square (χ^2) analysis of F2 population for studying inheritance pattern of flower colour in YBWF-1 × RM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Total number of plants</td>
</tr>
<tr>
<td>YBWF-1(White Flower)</td>
<td>20</td>
</tr>
<tr>
<td>RM-1 (Purple flower)</td>
<td>20</td>
</tr>
<tr>
<td>YBWF-1 x RM-1(F1)</td>
<td>20</td>
</tr>
<tr>
<td>YBWF-1x RM-1 (F2)</td>
<td>120</td>
</tr>
</tbody>
</table>
Table 2 Chi square (χ^2) analysis of F2 population for studying inheritance pattern of flower colour in YBWF-1 x L. No-3

<table>
<thead>
<tr>
<th>Generation</th>
<th>Total number of plants</th>
<th>Observed ratio</th>
<th>Expected ratio</th>
<th>χ^2-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>YBWF-1(White Flower)</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L No-3 (Purple flower)</td>
<td>20</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>YBWF-1 x L No-3 (F1)</td>
<td>20</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>YBWF-1 x L No-3 (F2)</td>
<td>120</td>
<td>26</td>
<td>94</td>
<td>3:1</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Fig.1 White flower colour line (RMWF-1) and Purple flower colour line (L No-3)

In the second cross ‘YBWF-1 x L No-3’, 94 plants were producing purple flower and 26 plants producing white colour flower. The χ^2 values indicated a good-fit to a 3:1 ratio ($\chi^2 = 0.71$; $P= 0.39$ Table 2). The pattern of segregation in F2 gave a goodness of fit to 3 Purple: 1 White (Table 1 and Table 2). On the basis of these results, it was confirmed that gene for purple colour was dominant over gene for white colour and this trait was controlled by monogenic dominant gene its distribution fitted the expected mendelian ratio of 3 (Purple flower) : 1 (White flower). Jindla and Singh (1970), Hanchinal and RR (1978) reported dominant nature of violet flower colour over light violet colour in cowpea (Vigna sinesis L.). Sangwan and Lodhi, 1998) reported purple flower colour was dominant over white flower colour in cowpea (Vigna unguiculata L. Walp.).
Panjehkeh et al., 2007) reported red flower line was dominant over white flower line in legume Swainsona formosa and in F2 population red flower line was resistant to Phytophthora cinnamomi. The association between flower colour and resistance may be due to anthocyanin pigment in the flower. Hence, the flower colour can be used as marker for this trait. Flowering is an important character and yam bean flower can be used for ornamental purpose. The findings of the present study could be utilized in ornamental breeding programme and inheritance pattern of pigment in yam bean flower.

References

