Formulated Sorghum Media as Alternative to Nutrient broth in Cultivation of *Staphylococcus aureus* (NCTC 6571) and *Bacillus subtilis* (NCTC 8241)

K. S. Izebe¹, J. A. Onaolapo², K. Ibrahim¹, Y. K. E. Ibrahim², P. Oladosu¹, Y. Ya’aba¹*, S. B. Mohammed¹, P. O. Adigwe¹ and P. F. Olurinola²

¹Department of Microbiology and Biotechnology, National Institute for Pharmaceutical Research and Development, Idu, Abuja, Nigeria
²Department of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria
*Corresponding author

Microbiological culture media are expensive been imported from developed countries, and there is need to formulate our local media from vast raw materials available to improve our foreign reserves. This study was aimed at formulation of culture media from sorghum grains to cultivate test bacteria commonly used in research purposes. The sorghum grains free from debris were soaked in distilled water for 24 h and ground into paste. The fibers were removed by filtration followed by centrifuged at 9000 rpm for 10 minutes to obtained gluten and starch deposits which were separated and dried at 25°C. The dried gluten and starch were digested with pepsin and amylase enzymes to obtained protein and sugar digests which was combined proportionally and pH 7.2 adjusted. A pure culture each of *Staphylococcus aureus* (NCTC 6571) and *Bacillus subtilis* (NCTC 8241) were inoculated into sterile formulated sorghum and nutrient media. A visualized turbidity was observed. The OD (0.66 and 0.65) of *S. aureus* and (0.57 and 0.47) for *B. subtilis* in sorghum and nutrient media respectively. The mean viable count of 6.0 x 10²¹ ± 0.004 and 5.7 x 10²¹ ± 0.003 CFU/mL of *Staphylococcus aureus* in sorghum and nutrient media showed similar pattern of no lag phase and lengthen log phase. The formulated sorghum media promotes and support the bacteria. The study recommends that sorghum media can be an alternative to nutrient broth as routine culture media.
meat digest, which promote the growth of microorganisms. Therefore, many sources could be used in the cultivation of microorganisms based on their diversified mode of degradation of materials in sourcing for energy. Bacteria and fungi also require macronutrient and microelement to grow (Basu et al., 2015). The use of Nutrient broth as a routine media is composed of digested peptones, yeast digests and sodium chloride in the cultivation of Staphylococcus aureus and Bacillus subtilis both Gram positive bacteria used for research purposes, therefore, a general-purpose media for cultivation of non-fastidious microorganisms. The use of dehydrated media has gained a global acceptance in both mycological and bacteriological laboratories (Franhauser, 2005). The Nutrient broth is obtained as dehydrated media and mostly imported from the developed countries and are expensive (Adesemoye and Adedire, 2005). There is need to explore vast resources in the development of media to substitute the commonly used media. Plant materials have been used to recover both fungi and bacteria from different samples sources. Local food stuff waste (Tortora et al., 2018), maize and beans (Oloke and Famurewa, 1991), sorghum extracts (Akinola et al., 1997), Groundnut (Akinola et al., 2004), cassava whey (Adesina and Akinynosoye, 2006), three-leaf yam (Eleke et al., 2006), African oil bean (Egenu and Njoku, 2006), pigeon pea (Laley et al., 2007) among other agricultural products have been used as both mycological and bacteriological media. Other researchers had sourced for cheap raw materials to formulate media to grow bacteria and fungi, which resulted in supporting and promoting the growth of microorganisms used (Laley et al., 2007; Deivanayaki and Iruthayaraj, 2012; Ravathie et al., 2012; Udenne et al., 2013; Basu et al., 2015; Pratibha et al., 2018 and Izebe et al., 2020). Famurewa and David (2008) in their study used Pseudomonas aeruginosa, Bacillus subtilis and other fungi species in the formulation of culture media sourced from local materials. Similarly, Shareef (2019) also in his study used Staphylococcus aureus, Escherichia coli, Bacillus cereus and Pseudomonas aeruginosa as microorganisms in the formulation of microbiological culture media from local sources. Culture media formulated from chickpea, rice, corn soy flour have been used by Mekala et al., (2016) in culturing E. coli, Pseudomonas sp., Bacillus sp., Staphylococcus sp., and Klebsiella sp.

Sorghum (Family Andropogaceae) is the fourth most important cereal crop in the world surpassed only by rice, wheat and maize respectively. It belongs to the family Andropogaceae. In Nigeria, Sorghum is a stable food for most of the households. Sorghum is grown in most of the States of Nigeria and large quantity harvested annually. Sorghum production exceeds 6 million tons annually (Etuk et al., 2012). Sorghum had been modified to have improved yield and high carbohydrate, protein and minerals content. The sorghum grain is rich in amino acids, fatty acids and micro and macronutrients that can be explored in the formulation of microbiological culture media for the cultivation of bacteria and fungi as alternative to the dehydrated media obtained commercially. This study is aimed at developing microbiological culture media from sorghum grains in the cultivation of Staphylococcus aureus and Bacillus subtilis.

Materials and Methods

Collection of materials

Sorghum grain of short kaura variety (SK 5912) was used in this study. It was obtained and identified by Institute of Agricultural Research, Ahmadu Bello University Zaria, Nigeria. The choice of sorghum was based on high nutritious value (Tables 1 and 2) and
improved varieties developed (Etuk et al., 2012)

Treatment of Materials

Approximately, two thousand grams (2000 g) of sorghum grains were cleaned up by removing debris and stones and soaked in distilled water for 24 hours. After 24 hours soaking, the grains were ground with miller machine (Honda, Japen) and centrifuged at 9000 rpm for 10 minutes where the gluten (protein) was separated from the starch. Both the gluten and starch (whitish) were separated with a dryer at 25°C for three days and stored at 4°C in refrigerator until requested for use.

Starch Digestion

Twenty grams (20 g) of the dried starch was dissolved in 100 mL distilled water in 1 L capacity flask and placed in water-bath at 70°C. About 5.0 mL of 0.1% amylase (Hitempase) was added and cooled to 60°C after 1 hour. This was followed by the addition of 1.0 mL Glycoamylase for 30 minutes (Cruickshank et al., 1983). The mixture was allowed to cool and centrifuged at 9000 rpm for 5 minutes. The supernatant was used for the estimation of sugar content. Ten millitre of the supernatant was estimated using oxidase test (Bask, 2007).

Gluten digestion

Twenty grams of the dried gluten was dispensed into 100 mL distilled water in 1.0 L capacity flask and placed in water-bath shaker at 52°C. Pepsin solution was added and mixed for 4 hours as explained by Cruickshank et al., (1983) and Zangne et al., (2011). The mixture was centrifuged at 9000 rpm for 5 minutes in Beckman centrifuge. The supernatant was used to estimate the total protein content using Biuret method adopted from Fenk et al., (2007).

Sorghum medium composition

The medium composition was based on addition of sorghum starch digest to sorghum protein digest in different ratios of 1:19, 2:18, 3:17, 4:16, 5:15, 6:14 and 7:17 as shown in the Table 3 below. For each mixture, the pH was adjusted to 7.4 and filtered in Whatman filter paper. The filtrates were dispensed into flasks and bottles and sterilized at 121°C for 15 minutes.

Bacteria inoculation

Strains of *Staphylococcus aureus* (NCTC 6571) and *Bacillus subtilis* (NCTC 841) were obtained from the National Institute for Pharmaceutical Research and Development, Idu, Abuja, Nigeria. The 24 hours’ pure culture of each bacterium was diluted serially in sterile peptone water in 1:10 where 0.2 mL diluents were separately inoculated into labelled tubes containing 4.8 mL of the formulated sorghum medium in triplicates. Similar inoculation process was carried out on the prepared industrially made nutrient broth. All the inoculated tubes were incubated at 37°C for 24 hours. Negative control tubes containing 5.0 mL sorghum and nutrient without test bacteria were also incubated at 37°C for 24 hours.

Monitoring the Bacterial Growth in liquid media

After the end of 24 hours incubation, the labelled culture tubes of *S. aureus* and *B. subtilis* were monitored for the turbidity appearance.

The spectronic 20 (spectrophotometer) was switch on and the absorbance was adjusted to 540 nm. The blank cultures without the test organisms were used to calibrate the reading followed by treatments testing against the blanks.

1846
Monitoring bacterial growth in solid medium

Nineteen folds serial dilutions (1:10) of the 24 hours-culture from the incubated sorghum medium with S. aureus were prepared. Similar dilutions were prepared from the nutrient broth cultures of S. aureus and B. subtilis and 1.0 mL from different dilutions were aseptically dispensed into sterile tryptic soya agar plates in triplicates. The plates were incubated at 37°C for 24 hours. The colony forming unit (CFU) was estimated using colony coulter. The colony in the tryptic soya agar plates each for S. aureus and B. subtilis were counted and expressed as colony forming units (CFU/mL).

Determination of growth curves

The Bio-screen C (Bio-screen C (200 wells), Biolink Laboratories, Finland) was put on to boot to maintain stability of the equipment. The sterile micro-wells were each dispensed with 0.3 mL of the formulated Sorghum broth in the honey wells. Similarly, 0.3 mL of the sterile nutrient broth was dispensed into the labeled honey wells. This was followed by addition of 0.05 mL of 3 hours’ culture each of the S. aureus and B. subtilis into the labeled wells of sorghum and dehydrated nutrient broth. The inoculated wells were transferred into chamber and the absorbance was taken at 540nm with an adjusted time interval of 0, 1, 2, 3, 4, 5 and 6 hours.

Data analysis

The data was analysed using SPSS (20.0 Version Inc., Chicago, USA). The mean and standard error of mean (±SEM) of the sorghum media and nutrient media values were calculated and presented in graphical and tabular forms. The p-value were considered significant at p<0.05.

Results and Discussion

The compositions of sugar and protein digest in 15.0 mL capped tubes containing the 24 hours cultures of S. aureus and B. subtilis in formulated sorghum media revealed that 6:15 ratio of sugar to protein had higher turbidity while the higher sugar content and low protein gave moderate to low turbid culture (Table 4).

The growth profile of the test bacteria (S. aureus and B. subtilis) on both sorghum and commercially processed nutrient broth revealed varied from zero to six hours-growth time (Figure 1 and 2). At zero hour, the absorbance for test bacteria was relatively on the low value. But six hours’ growth, the absorbance had increased to 0.60 except for B. subtilis

Table 1 Composition of nutrients in sorghum grains

<table>
<thead>
<tr>
<th>Kernel fraction</th>
<th>% Kernal weight</th>
<th>Protein (%)</th>
<th>Ash (%)</th>
<th>Oil (%)</th>
<th>Starch (%)</th>
<th>Niacin (mg/100g)</th>
<th>Riboflavin (mg/100g)</th>
<th>Pyridoxine (mg/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole kernel</td>
<td>100.0</td>
<td>12.30</td>
<td>1.67</td>
<td>3.60</td>
<td>73.80</td>
<td>4.50</td>
<td>0.13</td>
<td>0.47</td>
</tr>
<tr>
<td>Endosperm</td>
<td>82.30</td>
<td>12.30</td>
<td>0.37</td>
<td>0.60</td>
<td>82.50</td>
<td>4.40</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>Germ</td>
<td>9.80</td>
<td>18.90</td>
<td>10.40</td>
<td>28.10</td>
<td>13.40</td>
<td>8.10</td>
<td>0.39</td>
<td>0.72</td>
</tr>
<tr>
<td>Bran</td>
<td>7.90</td>
<td>6.90</td>
<td>2.00</td>
<td>4.90</td>
<td>34.60</td>
<td>4.40</td>
<td>0.40</td>
<td>0.44</td>
</tr>
</tbody>
</table>

(Etuk et al., 2012)
Table 2 Amino acid composition in sorghum grains

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Dry</th>
<th>Nit</th>
<th>Arg</th>
<th>Cys</th>
<th>Gly</th>
<th>His</th>
<th>Leu</th>
<th>Lys</th>
<th>Met</th>
<th>Phe</th>
<th>Ser</th>
<th>Thr</th>
<th>Try</th>
<th>Tyr</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositions</td>
<td>870</td>
<td>14.1</td>
<td>3.4</td>
<td>1.6</td>
<td>3.5</td>
<td>4.2</td>
<td>11.4</td>
<td>2.1</td>
<td>1.6</td>
<td>4.2</td>
<td>3.9</td>
<td>2.9</td>
<td>1.0</td>
<td>3.8</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Key: Dry = Dry matter, Nit = Nitrogen, Arg = Arginine, Cys = Cysteine, Gly = Glycine, His = Histidine, Leu = Leucine, Lys = Lysine, Met= Methionine, Phe= Phenylalanine, Ser = Serine, Thr = Threonine, Try = Tryptophan, Try = Tyrosine, Val = Valine. (Etuk et al., 2012)

Table 3 Combinations of starch and protein digest in the formulated sorghum media

<table>
<thead>
<tr>
<th>Starch digest (mL)</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein digest (mL)</td>
<td>950</td>
<td>900</td>
<td>850</td>
<td>800</td>
<td>750</td>
<td>700</td>
<td>650</td>
</tr>
</tbody>
</table>

Table 4 The turbidity profile of *S. aureus* and *B. subtilis* in the sugar to protein ratio composition after 24 hours incubation

<table>
<thead>
<tr>
<th>Starch digest (mL)</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein digest (mL)</td>
<td>950</td>
<td>900</td>
<td>850</td>
<td>800</td>
<td>750</td>
<td>700</td>
<td>650</td>
</tr>
<tr>
<td>S. aureus</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: (+) turbid, (++) moderate turbid, (+++) highly turbid

Table 5 OD at 540 nm and viable count of 24 hours cultures of *S. aureus* and *B. subtilis*

<table>
<thead>
<tr>
<th>Growth profile</th>
<th>Sorghum medium</th>
<th>Nutrient broth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Absorbance (540nm)</td>
<td>0.660</td>
<td>0.571</td>
</tr>
<tr>
<td>Viable count (CFU/mL)</td>
<td>6.0 x 10^{21} ± 0.004</td>
<td>4.7 x 10^{20} ± 0.005</td>
</tr>
</tbody>
</table>

Fig.1 Growth profile *Staphylococcus aureus* in Nutrient broth (A) and formulated Sorghum broth (B)
The bacteria growth after 24 hours-time in both media showed some turbid response with different values (Table 5). The absorbance values were ranged from 0.600 to 0.478 for both bacteria in nutrient broth while 0.600 to 0.571 were obtained from the culture in the formulated sorghum medium. The viable counts for the formulated sorghum medium and nutrient broth gave mean viable count of $6.0 \times 10^{21} \pm 0.004$ CFU/mL and $4.7 \times 10^{21} \pm 0.005$ CFU/mL for *S. aureus* and *B. subtilis* respectively (Table 5) in formulated sorghum medium respectively. The mean viable counts of $5.7 \times 10^{21} \pm 0.003$ and $4.3 \times 10^{20} \pm 0.003$ CFU/mL estimated for *S. aureus* and *B. subtilis* in nutrient broth respectively.

The sorghum grains of short variety used in this study were found to be rich in proteins, sugars, and amino acids that are necessary in the formation of microbiological culture media (Ekut et al., 2012; Izebe et al., 2020). The findings of this study showed that the sorghum media promotes the growth of *S. aureus* and *B. subtilis*. The OD values at 540 nm after 24 hours culture gave 0.660 and 0.571 for the *S. aureus* and *B. subtilis* in sorghum medium while 0.650 and 0.478 were obtained in nutrient broth culture respectively. The estimated mean CFU of *S. aureus* and *B. subtilis* in 24 hours. Sorghum medium 24-hour culture when sub-cultured in tryptic soya agar gave CFU of 6.0×10^{20} for *S. aureus* while *B. subtilis* gave CFU of 5.0×10^{20}. Similarly, in nutrient broth, the counts included 4.6×10^{21} and 5.1×10^{20} CFU respectively. These results agreed with similar work carried out by Izebe et al., (2020) using sorghum medium to growth *Pseudomonas aeruginosa* and *Escherichia coli*. The growth curves of *S. aureus* and *B. subtilis* in sorghum and nutrient broth showed similar pattern of minimum lag phase, which was followed by log phase and brief stationary phase. The growth curves of *S. aureus* and *B. subtilis* in sorghum and nutrient broth also agreed with the growth curves of *P. aeruginosa* and *E. coli* in sorghum and nutrient broth as reported by Izebe et al., (2020). The need for preparations of microbiological culture media from local resources has led researchers to into materials readily available to us. This is similar to study carried out by Pratibha et al., (2018) that reported formulations from seeds and peels extracts to grow *E. coli, Serratiasp.*, and *P. aeruginosa*. Similarly, Deivanayaki and Iruththayaraj (2012) who reported the use of formulations from Gooseberry and use of carrot, tomato, cabbage and pumpkin to cultivate bacteria and fungi (Wasas et al., 1999; Uthayasooriyan et al., 2016). In Nigeria, other researchers have formulated microbiological culture media from local materials (Akinola et al., 1997; Ikenebomen and Chikwendu, 1997; Oloke and Famurewa, 1991; Akinola et al., 2004; Eleke et al., 2006; Adesina and Akinyosoye, 2006; Laleyet al., 2007). In this is study, the formulated
Sorghum medium was found to contain 0.103g sugars and 2.4g proteins per litre when compared with Nutrient broth composition of 6.0g of peptone, 3.0g of yeast extract and 1.5g beef extract to give 28g per liter.

In conclusion formulated Sorghum broth is a complex media containing 0.103 g of sugar and 2.4 g of protein that promotes the cultivation of *Staphylococcus aureus* and *Bacillus subtilis*, alternative to Nutrient broth as basal media for routine use in the microbiological laboratory. The Sorghum media is formulated from locally sourced and cheap material for the development of the sorghum medium. The study recommended further work to define sugar and protein digest.

Acknowledgment

The authors acknowledge the National Institute for Pharmaceutical Research and Development (NIPRD), Idu- Abuja for their supports and the Institute of Agricultural Research, Ahmadu Bello University Zaria, Nigeria, for identification of the sorghum grain.

References

How to cite this article: