Review Article

Bovine-Origin Human Therapy; Need More Attention

AbdulRahman A. Saied\(^1\)* and Asmaa A. Metwally\(^2\)

\(^1 \) Aswan Office, Touristic Activities and Interior Offices Sector, Ministry of Tourism, Aswan 81511, Egypt

\(^2 \) Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan 81511, Egypt

*Corresponding author

Abstract

The nature of bovines’ life enable them to form developed immune responses due to their exposure to many pathogens, besides their immune organs’ characteristics. Bovine are herbivorous animals which make them a rich and safe source for human’s therapies. The potential role of bovine in providing humans with antibodies in serum and milk in particularly the specific antibodies against human viruses or even relevant bovine viruses cannot be denied. Here, we shortly review the roles of bovine in human infections as a model for producing antibodies specific for human viruses and bacteria, designing vaccines as well the role of some bovine viruses in stimulating the human immunity memory against human viruses e.g. Rota vaccines.

Keywords

Bovine, Viruses, Human, Therapy, Vaccines

Article Info

Accepted: 24 August 2019
Available Online: 10 September 2019

Introduction

"And there is no creature on [or within] the earth or a bird that flies with its wings except [that they are] communities like you." (Cattle-38), the Noble Quran. Although there are differences between human and bovines, the same approximate gestation period of 280 days between bovine and human suggest the near immune response between them\(^1\). Colostrum or serum-rich in antibodies from bovine can be used against human diseases caused by viruses and also bacteria.

Antibodies-rich Colostrum

It's not new the natural health benefits of bovine colostrum especially for human children\(^2,3\) who consume it for nutrition, immunity and growth\(^4\). Cow colostrum contains IgG levels higher than that of woman colostrum as bovine IgG does not cross the placenta in addition to lactoferrin, lactoperoxidase, lysozyme and other immune factors which have antiviral activities\(^3,5\). As a potential means of controlling human viral disease outbreaks\(^6\), bovine colostral and milk IgG were developed and applied as a passive...
immunity to human disease7-12. Bovine colostrum may be beneficial in people infected with HIV13, where IgG derived from colostrum enhances immune response to HIV. Antibodies from some leukemic cattle can inhibit HIV-1 reverse transcriptase activity in vitro14. Use of polyclonal bovine antibodies as a therapy treat human pathogens12 is due to their potential for increased potency in the formation of immune complexes and neutralization of pathogens epitopes15 consequently preventing or control of human viral infections7-12,16. Against Rota virus, milk immunoglobulin concentrate could be used to induce passive immunity to infantile rotavirus gastroenteritis with thanks to the technology of the milk immunoglobulin concentrate17. Bovine lactoferrin plays an important role in the prevention of colon cancer18 which is the major cause of cancer death in developed and developing countries19.

Study carried out by Fang He et al20, suggested that the oral administration of bovine colostrum may possess some modulatory effect on human humoral immune response against enteropathogenic \textit{Salmonella typhi} vaccine20, as well supplementation of infants with formula with Bovine MFGM induced immunomodulatory effects against pneumococcus vaccine11. Also, bovine antibodies could prophylactically reduce the carcinogenic bacteria transmission from mother to child and other pathogens (\textit{Shigella flexneri}, \textit{Escherichia coli}, \textit{Clostridium difficile}, \textit{Cryptosporidium parvum} and \textit{Helicobacter pylori})22,23 in human beings by passive immunity22 motivating the hypothesis of use of immune milk products as promising health-promoting functional foods, or nutraceuticals22.

Bovine vaccination

Bovine vaccination with \textit{Streptococcus mutans}, the main aetiological agent in dental caries in humans, whole bacteria or purified components result in antibodies against \textit{S. mutans}. Oral administration of these antibodies from immunized cows have been used successfully as prophylaxis against dental caries in both an animal experimental model and healthy volunteers.

Bovine vaccination with a specific human virus results in production of antigen-specific antibodies in sera and colostrum (Hyperimmune milk) of bovine13. Bovine yields remarkably high BrNAb titers rather than other animal species after vaccination. Indeed, bovine antibodies from vaccinated cows could ultimately benefit for individuals infected with HIV through their extraordinary characteristics.

Transchromosomic (Tc) bovines

A creative study was carried out by Luke et al26 using transchromosomic (Tc) bovines to produce human anti-MERS-CoV antibodies. This study demonstrated an efficacy in vitro and in a mouse model of MERS-CoV infection showing how large quantities of human MERS-CoV-neutralizing antibodies can be rapidly produced in Tc bovines, providing a possible strategy for the development of passive immunotherapy against coronaviruses or other new and emerging infectious diseases26. Fully human polyclonal antibodies, produced in TcB, can be elicited against many viruses26-32 (Ebola Zaire Virus) and some of them have already been shown to be safe and effective in human clinical trials30,33.

Bovine could be used in the biological production of human polyclonal antibodies where transgenic calves and transgenic platforms were created to produce polyclonal antibodies derived from animals and human sequences34,35. Coping with the problem of that most polyclonal antibodies will target non-neutralizing epitopes13, through producing monoclonal BrNAbS targeting
preserved epitopes among different subtypes of viruses with humanization of bovine monoclonal antibody reducing anti-antibody responses.

Figure 1. Schematic diagram summarized the possible ways for getting bovine antibodies which play a pivotal role in human immunity and health. Bovine antibodies produced along the entire cow life against many pathogens exposed for, whatever bovine or human pathogens, natural infections or organized vaccinations. Tc bovines used as animal model system for producing antibodies against the emerging human viruses, the field which attracting researchers for more discoveries.

Based on Bovine – human rotaviruses reassortment, as a result of anthropozoonosis, and human rotavirus attenuation in bovines (HRR), RotaShield and RotaTeq vaccines were developed and both vaccines have been licensed in many countries.

In conclusion, the present review provides important insights into how to get human therapies from bovine with the need for presence of more advanced and sensitive technologies for achieving that. How bovine’s immunity respond to viruses infect humans and bovines help us more, in the light of the immunological studies, in preventing of humans against viral infections through vaccination and passive immunization.

Abbreviation

BrNAbs; broad neutralizing antibodies
HIV Env; Human immunodeficiency virus envelop

CD4bs; T-helper cell binding site
HCDR3; the heavy chain complementarity-determining region 3
HRR; host-range restriction. MERS-CoV; Middle East Respiratory Syndrome Coronavirus.
Bovine MFGM; Bovine milk fat globule membranes

Ethical statement

No ethical approval was required for this study.

Conflict of interests

The author declares no financial or commercial conflict of interest.

Author's contributions

AAS prepared and reviewed the original draft
of the manuscript. AAM discussed the manuscript idea and help in manuscript revision. Both authors read and approved the final manuscript.

Acknowledgement

AbdulRahman A. Saied would like to thank Aswan office, Ministry of Tourism for their encouragement and support.

References

How to cite this article: