Response of Different Levels of Plant Spacing on Vegetative Growth and Yield Attributes of Ashwagandha (Withania somnifera) var. Poshita and Sarpagandha (Rauvolfia serpentina. Benth) var. Sheel under Open Environment and Orchard Conditions

S.S. Saravanan¹, Deepak Lall¹*, Vijay Bahadur¹ and Sanjeev Kumar²

¹Department of Horticulture, Naini Agricultural Institute (NAI), Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS University), Prayagraj (Allahabad)-211007 (U.P.), India
²U.P. Council of Agricultural Research (UPCAR) Lucknow, U.P. India-220601

*Corresponding author

A B S T R A C T

A field experiment was conducted during the two years research study. The experiment shows the effect of different planting distance under open based and Aonla shade condition revealed that maximum vegetative growth viz., plant height (104.84cm), Number of leaves per plant (215.36), Number of branches per plant (44.78), Root length (45.82 cm), Root fresh weight (30.19 g), Root dry weight (7.59 g) and Total dry matter production (g) per plant (25.14 g) is associated with treatment T6-S6 Ashwagndha (M2S2) 70 x 70cm (under Aonla shade condition), T8-S8 Sarpagandha (M2S4) 50 x 50cm (under Aonla shade condition) along with T5-S5 Ashwagndha (M2S1) 60 x 60cm (under Aonla shade condition). Whereas the highest yield and yield attributes parameters viz., Root yield (g) per plant (38.21g), Root yield (kg) per plot (2.53kg) and Root yield tones per ha. (1.69t/ha⁴) was observed maximum in treatment T8-S8 Sarpagandha (M2S4) 50 x 50cm (under Aonla shade condition). While the maximum economics and Benefit: Cost ratio i.e. (1:4.76) was also found to be the highest with treatments T8-S8 Sarpagandha (M2S4) 50x50cm (under Aonla shade condition).

Keywords
Ashwagandha, Sarpagandha, Plant Spacing, Environment, Shade conditions, Growth and Yield

Introduction

Medicinal plants can be cultivated as pure crop, intercrop and border crop in plantation crops, perennial fruit orchards and agro-forestry plantation system. Since the cultivable land is limited, efforts are needed to push these crops along with priority crops like Aonla and Guava orchards. Introduction of highly profitable medicinal crops into the existing cropping system without completely replacing the traditional crops is a strategy that is acquiring acceptance in India. According to one estimate of botanical survey of India, about 7,500 plants are used for medicinal purposes out of 15,000 plants of our country. There is a growing demand for medicines of Ayurveda, Siddha, Unani and Homeopathy both for domestic consumption and export purposes. Out of 80,000 tonnes of
medicinal plants imported by Western countries, India tops the list of exporters to USA and Europe with a share of over 10,000 tonnes Kumar et al., (2007).

The values of trade in medicinal plants are about Rs. 5,000 crores, while the world trade is about US $ 62 billion. India exports herbal products and medicines to the tune of Rs. 550 crores annually Reddy (2004). A survey indicated that the use of herbal medicines will reach to the tune of US $ 5 trillion during 2050 Kumar and Singh (2003). Currently, the Ayurvedic and herbal products turnover is estimated to be Rs. 25,000 crores.

Ashwagandha (Withania somnifera), a member of family Solanaceae, in an important medicinal plant used for drugs mentioned in ancient ayurvedic literature. The plant is erect, herbaceous, evergreen to –mentose and branched under – shrub reaching up to 15-170 cm of height. India officially recognized over 3000 plants for their medicinal values. India being one of the 12th mega-diversity centers in the world, with this bio-resource wealth, it ranks 10th in the world and 4th in Asia having 15 to 20 thousand plants species with medicinal value of which 30 per cent are considered as endemic to India. Currently, there are about 880 species of medicinal plants in all India trade Kumar et al., (2007). Among the various medicinal plants, Withania somnifera is also known as ‘Winter cherry’ in English and ‘Asgandh’ in Hindi. Withania is an important medicinal plant and it is used in Ayurvedic and Unani systems of medicine extends back over 3000 to 4000 years. The crop is grown on marginal land and is also suitable for dry land farming (Hudge et al., 2002). The yield and quality in cultivated plants depend on several factors including environmental adaptability of particular cultivar or variety in specific area. Optimum plant density is important for best utilization of solar radiation and soil nutrients.

Plant growth regulators (PGRs) are known to alter the growth behavior, development and bio-synthesis of secondary metabolites in medicinal and aromatic plants (Audus, 1959; Steward and Kriikorian, 1971).

Rauwolfia roots or Serpentine roots are one of the important crude drugs used in modern medicine. The global market for medicinal plants has been growing and capitalizing on the growing awareness of herbal and aromatic plants worldwide. Rauwolfia serpentina (L.) Benth belongs to the family Apocyanaceae. There are approximately 85 species in the genus Rauwolfia found in tropical regions. Its leaves are simple, 7.5 -10 cm long and 3.5 -5 cm broad. Root is prominent, tuberous, usually branched, 0.5 to 2.6 cm diameter, goes 40 to 60 cm deep into soil. The root bark, which constitutes 40-60% of the whole root, rich in 90% alkaloids. The fresh root emits a characteristic acrid aroma and is very bitter in taste. The plant grows generally in the region in the annual rainfall of 200-250 cm and upto an altitude of 1000 m and favors deep fertile soil with rich organic matter De and Dey, (2010). About 80 alkaloids are isolated from Rauwolfia species. The most important among these are reserpine, serpentine, rauvolfinine, ajmalicine, indobinine, reserpiline, serpagine, serpentine, rescinamine, doserpidine, ajmaline, ajmalnine, sandwicolidine, ajmlicidine, yohimbine etc. (Deshmukh et al., 2012). The total alkaloid content varies from 1.7-3% of the dried roots depending upon varieties and cultivation practices. Rauwolfia has been categorized as an endangered species based on the IUCN Red Data Book and critically endangered in CAMP 2001 report Bhattarai et al., (2002) (Table 1).

Rauwolfia is used in Ayurveda, Siddha and Yunani sciences of medicines for the treatment of high blood pressure, insomnia, cardiac diseases and a number of mental
problems such as psychic disorders, mental retardation, epilepsy, agitation and neurotic disorders. The powder of Sarpagandha roots is also used for the treatment of snakebites or snake poisoning. Root decoction and leaves are given to cure snakebite in Satar tribe of Morang and Jhapa districts Siwakoti and Siwakoti (2000). Extracts of the roots are valued for intestinal troubles; aqueous decoction of root is given to cattle in diarrhoea Dey (1998). Since the information on these aspects of Ashwagandha and sarpagandha is meager and have a standardization of agro-techniques for its cultivation and shall leads a long way to research works and practice of commercial cultivation among the growers. The present investigation on Ashwagandha and Sarpagandha was conducted to evaluate the Response of different levels of plant spacing on vegetative growth and yield performance of Ashwagandha (*Withania Somnifera*) var. Poshita and Sarpagandha (*Rauvolfia serpentina* Benth) var. Sheel under open environment and orchard shade conditions.

Materials and Methods

A field experiment on research entitled “Response of different levels of plant spacing on vegetative growth and yield attributes of Ashwagandha (*Withania Somnifera*) var. Poshita and Sarpagandha (*Rauvolfia serpentina* Benth) var. Sheel under open environment and orchard conditions” was conducted at Central Orchard, Horticulture Research Farm, Department of Horticulture, Naini Agricultural Institute (NAI), Sam Higginbottom University of Agriculture, Technology and Sciences, (SHUATS) Prayagraj (Allahabad) along with the support of financial assistance through U.P. Council of Agricultural Research (UPCAR) Lucknow, U.P. India. The area is situated on the south of Prayagraj (Allahabad) on the right bank of the river Yamuna at Rewa Road at a distance of about 6 Km from Prayagraj city. It is positioned at 25.41°N latitude and 81.84°E longitude and about 98 m from above mean sea level. Prayagraj has sub-tropical climate, which prevails in the South-East part of Uttar Pradesh, with the both extremes of temperature i.e. the winters and the summers. In fairly cold winters (during Oct-Feb), the temperature falls to nearly 2-5°C, sometimes below as 1°C. During summer (March-June), the temperature raises upto 46°C, sometimes peak 48-49°C with low relative humidity (20%) and dust laden winds. During monsoon (June-Sept) it reaches 85% with average rainfall of 1100 mm. The soil of experimental plot was well drained, fairly level land rich in sandy loam texture along with uniform fertility with optimum level of soil microbes’ availability status along with low clay and higher percentage of sand particles. The experiment was design with 8 treatments and laid out in Randomized Block Design (RBD) with 3 replications on well prepared and pulverized piece of land. The allocation of these 8 treatment combination was done randomly. All the cultural practices related to Ashwagandha and Sarpagandha was conducted as per recommended requirement. Under this research work a nursery block was established to fulfill the availability and requirement of planting material throughout the research programme. Seedlings of Ashwagandha and Sarpagandha was raised through bed system technique (raised bed method) followed by establishment of 2000 plants each for Ashwagan dha and Sarpagandha through cup system. The planting materials which was evolved is used for cultural operations like re-planting, gap-filling and transplanting under open condition and orchard based shade condition. The treatment combinations were formulated from two different spacings of Ashwagandha and Sarpagandha under open based enviornment and Aonla shade condition viz., T1-S1 Ashwagndha (M1 S1) 60 x 60cm (under
Results and Discussion

The Analysis of variance revealed significant differences among different treatment combination. A wide range of variations among the different combination of shade condition and different spacing of Ashwagandha and Sarpagandha in respect of Plant height (cm), Number of leaves per plant, Number of branches per plant, Root length (cm), Shoot length (cm), Root fresh weight (g), Root dry weight (g) per plant, Total dry matter production (g) per plant, Root yield (g) per plant, Root yield (kg) per plot and Root yield (t ha⁻¹) were recorded.

The maximum plant height (104.84cm) was recorded in treatment T_6-S_6Ashwagndha (M_2 S_2) 70 x 70cm (under Aonla shade condition) and the minimum plant height (59.14cm) was found in treatment T_3-S_3Sarpagandha (M_1 S_3) 40 x 50cm (under open condition). Similar findings were also reported by Manish et al., (2003), Pakkiyanathan et al., (2004), Kahar et al., (1991) and Mohd. Abbas et al., (1994).

The maximum Number of leaves per plant (215.36) was recorded with T_8-S_8 Sarpagandha (M_2 S_4) 50 x 50 cm (under Aonla shade condition) and the minimum Number of leaves per plant (193.62) was found in treatment T_1-S_1 Ashwagndha (M_1 S_1) 60 x 60cm (under open condition). The maximum Number of branches per plant (44.78) was recorded in T_5-S_5 Ashwagndha (M_2 S_1) 60 x 60cm (under Aonla shade condition) and the minimum Number of branches per plant (22.65) was found in treatment T_7-S_7 Sarpagandha (M_2 S_3) 40 x 50cm (under Aonla shade condition).

These results were in conformity with the findings of Patel et al., (2004) and Desai et al., (2017), Kahar et al., (1991) and Mohd. Abbas et al., (1994). in Ashwagandha. The maximum Root dry weight (g) (7.59g) was recorded in T_8-S_8 Sarpagandha (M_2 S_4) 50 x 50cm (under Aonla shade condition) and the minimum Root dry weight (5.66g) was found in treatment T_1-S_1 Ashwagndha (M_1 S_1) 60 x 60cm (under open condition) (Fig. 1 and 2).
Table 1 Impact of different levels of plant spacing on growth and yield attributes of Ashwagandha (*Withania Somnifera*) var. Poshita and Sarpagandha (*Rauvolfia serpentina* Benth.) var. Sheel under different open environment and shade condition

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Plant height (cm)</th>
<th>No. of leaves per plant</th>
<th>No. of branches per plant</th>
<th>Root length (cm)</th>
<th>Shoot length (cm)</th>
<th>Root fresh weight (g) per plant</th>
<th>Root dry wt. (g) per plant</th>
<th>Total dry matter production (g) per plant</th>
<th>Root yield (g) per plant</th>
<th>Root yield (kg) per plot</th>
<th>Root yield (t ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁-S₁ Ashwagndha (M₁S₁) 60x60cm (under open condition)</td>
<td>104.29</td>
<td>193.62</td>
<td>42.40</td>
<td>30.51</td>
<td>39.07</td>
<td>28.34</td>
<td>5.66</td>
<td>24.34</td>
<td>9.17</td>
<td>0.43</td>
<td>0.27</td>
</tr>
<tr>
<td>T₂-S₂ Ashwagndha (M₁S₂) 70x70cm (under open condition)</td>
<td>101.18</td>
<td>195.62</td>
<td>43.10</td>
<td>32.30</td>
<td>42.11</td>
<td>27.52</td>
<td>6.10</td>
<td>25.02</td>
<td>8.89</td>
<td>0.35</td>
<td>0.20</td>
</tr>
<tr>
<td>T₃-S₃ Sarpagandha (M₁S₃) 40x50cm (under open condition)</td>
<td>59.14</td>
<td>207.85</td>
<td>23.08</td>
<td>46.11</td>
<td>0.00</td>
<td>19.50</td>
<td>7.06</td>
<td>0.00</td>
<td>13.04</td>
<td>1.49</td>
<td>1.33</td>
</tr>
<tr>
<td>T₄-S₄ Sarpagandha (M₁S₄) 50x50cm (under open condition)</td>
<td>61.11</td>
<td>212.74</td>
<td>23.29</td>
<td>47.09</td>
<td>0.00</td>
<td>17.51</td>
<td>7.44</td>
<td>0.00</td>
<td>34.16</td>
<td>2.20</td>
<td>1.41</td>
</tr>
<tr>
<td>T₅-S₅ Ashwagndha (M₂S₁) 60x60cm (under Aonla shade)</td>
<td>104.05</td>
<td>198.93</td>
<td>44.78</td>
<td>33.48</td>
<td>43.21</td>
<td>29.25</td>
<td>6.33</td>
<td>25.14</td>
<td>9.51</td>
<td>0.50</td>
<td>0.32</td>
</tr>
<tr>
<td>T₆-S₆ Ashwagndha (M₂S₂) 70x70cm (under Aonla shade)</td>
<td>104.84</td>
<td>202.58</td>
<td>43.63</td>
<td>36.47</td>
<td>45.82</td>
<td>30.19</td>
<td>6.80</td>
<td>24.80</td>
<td>10.17</td>
<td>0.69</td>
<td>0.22</td>
</tr>
<tr>
<td>T₇-S₇ Sarpagandha (M₂S₃) 40x50cm (under Aonla shade)</td>
<td>61.20</td>
<td>211.49</td>
<td>22.65</td>
<td>50.63</td>
<td>0.00</td>
<td>18.50</td>
<td>7.52</td>
<td>0.00</td>
<td>32.31</td>
<td>1.85</td>
<td>1.50</td>
</tr>
<tr>
<td>T₈-S₈ Sarpagandha (M₂S₄) 50x50cm (under Aonla shade)</td>
<td>62.32</td>
<td>215.36</td>
<td>23.49</td>
<td>51.05</td>
<td>0.00</td>
<td>19.75</td>
<td>7.59</td>
<td>0.00</td>
<td>38.21</td>
<td>2.53</td>
<td>1.69</td>
</tr>
<tr>
<td>F-test</td>
<td>S</td>
</tr>
<tr>
<td>C.D. at 05</td>
<td>0.031</td>
<td>0.051</td>
<td>0.049</td>
<td>0.111</td>
<td>0.051</td>
<td>0.048</td>
<td>0.394</td>
<td>0.394</td>
<td>10.729</td>
<td>0.041</td>
<td>9.657</td>
</tr>
<tr>
<td>Sed.</td>
<td>0.014</td>
<td>0.024</td>
<td>0.023</td>
<td>0.052</td>
<td>0.024</td>
<td>0.022</td>
<td>0.183</td>
<td>0.183</td>
<td>5.003</td>
<td>0.019</td>
<td>4.502</td>
</tr>
</tbody>
</table>

2069
Table.2 Economics with Benefit: Cost ratio of Ashwagandha and Sarpagandha as a (intercrops) under different treatments.

<table>
<thead>
<tr>
<th>Tr. Symbol</th>
<th>Treatment Combinations</th>
<th>Cost of cultivation (Rs. ha(^{-1}))</th>
<th>Root Yield (t/ha(^{-1}))</th>
<th>Root Selling (Rate/kg)</th>
<th>Gross Return (Rs. Qt / ha(^{-1}))</th>
<th>Net return (Rs. Qt / ha(^{-1}))</th>
<th>B:C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(_1)</td>
<td>T({1})-S({1}) Ashwagndha (M({1}) S({1})) 60x60cm (under open condition)</td>
<td>33, 834</td>
<td>0.27</td>
<td>175</td>
<td>47250</td>
<td>13416</td>
<td>1: 1.40</td>
</tr>
<tr>
<td>T(_2)</td>
<td>T({2})-S({2}) Ashwagndha (M({1}) S({2})) 70x70cm (under open condition)</td>
<td>33, 834</td>
<td>0.20</td>
<td>175</td>
<td>35000</td>
<td>1166</td>
<td>1: 1.03</td>
</tr>
<tr>
<td>T(_3)</td>
<td>T({3})-S({3}) Sarpagandha (M({1}) S({3})) 40x50cm (under open condition)</td>
<td>88, 700</td>
<td>1.33</td>
<td>250</td>
<td>332500</td>
<td>243800</td>
<td>1: 3.75</td>
</tr>
<tr>
<td>T(_4)</td>
<td>T({4})-S({4}) Sarpagandha (M({1}) S({4})) 50x50cm (under open condition)</td>
<td>88, 700</td>
<td>1.41</td>
<td>250</td>
<td>352500</td>
<td>263800</td>
<td>1: 3.97</td>
</tr>
<tr>
<td>T(_5)</td>
<td>T({5})-S({5}) Ashwagndha (M({2}) S({1})) 60x60cm (under Aonla shade condition)</td>
<td>33, 834</td>
<td>0.32</td>
<td>175</td>
<td>56000</td>
<td>22166</td>
<td>1: 1.66</td>
</tr>
<tr>
<td>T(_6)</td>
<td>T({6})-S({6}) Ashwagndha (M({2}) S({2})) 70x70cm (under Aonla shade condition)</td>
<td>33, 834</td>
<td>0.22</td>
<td>175</td>
<td>38500</td>
<td>4666</td>
<td>1: 1.14</td>
</tr>
<tr>
<td>T(_7)</td>
<td>T({7})-S({7}) Sarpagandha (M({2}) S({3})) 40x50cm (under Aonla shade condition)</td>
<td>88, 700</td>
<td>1.50</td>
<td>250</td>
<td>375000</td>
<td>286300</td>
<td>1: 4.23</td>
</tr>
<tr>
<td>T(_8)</td>
<td>T({8})-S({8}) Sarpagandha (M({2}) S({4})) 50x50cm (under Aonla shade condition)</td>
<td>88, 700</td>
<td>1.69</td>
<td>250</td>
<td>422500</td>
<td>333800</td>
<td>1: 4.76</td>
</tr>
</tbody>
</table>
Fig. 1 Influence of different levels of plant spacing on vegetative growth parameters of Ashwagandha (*Withania Somnifera*) var. Poshita and Sarpagandha (*Rauvolfia serpentina* Benth) var. Sheel under different environmental condition

Fig. 2 Effect of different levels of plant spacing on yield performance of Ashwagandha (*Withania Somnifera*) var. Poshita and Sarpagandha (*Rauvolfia serpentina* Benth) var. Sheel under open environment and shade condition
The maximum Total dry matter production per plant (25.14g) was recorded with T5-S5-Ashwagndha (M2 S1) 60 x 60cm (under Aonla shade condition) and the minimum Total dry matter production per plant (24.34g) was found in treatment T1-S1-Ashwagndha (M1 S1) 60 x 60cm (under open condition). These results are in accordance with Kubasad et al., (2008), Kahar et al., (1991), Mohd. Abbas et al., (1994), Desai et al., (2017). The maximum Root yield per plant (38.21g) was recorded in T8-S8-Sarpagandha (M2 S4) 50 x 50cm (under Aonla shade condition) and the minimum Root yield per plant (9.17g) was concealed with treatment T1-S1-Ashwagndha (M1 S1) 60 x 60cm (under open condition). The maximum Root yield per plot (2.53kg) was recorded with T8-S8-Sarpagandha (M2 S4) 50 x 50cm (under Aonla shade condition) and the minimum Root yield per plot (0.35kg) was pertain with treatment T2-S2-Ashwagndha (M1 S2) 70 x 70cm (under open condition). The maximum Root yield (1.69 t/ha−1) with the application T8-S8-Sarpagandha (M2 S4) 50 x 50cm (under Aonla shade condition) and the minimum Root yield (0.20 t/ha−1) were found in treatment T2-S2-Ashwagndha (M1 S2) 70 x 70cm (under open condition). Similar results were also observed by Maheshwari et al., (2000) and Desai et al., (2017). The above results are in close conformity with those of Kahar et al., (1991) and Mohd. Abbas et al., (1994).

The data presented in Table 2 indicated that the response of different plant spacing under different environmental condition (Open and Aonla shade). The maximum Gross return (422500), Net return (333800) and Benefit: cost ratio (1:4.76) was observed highest with treatment T8-S8-Sarpagandha (M2 S4) 50 x 50cm (under Aonla shade condition) along with highest Gross return (56000), Net return (22166) and Benefit: cost ratio (1:1.66) was found best in treatment T5 S5-Ashwagndha (M2 S1) 60 x 60cm (under Aonla shade condition) respectively. Based on the above findings and economic returns, it is concluded that the potential production of Ashwagndha and Sarpagandha can be secured by raising the crop with a different plant spacing under suitable environmental condition of Prayagraj (Allahabad) agro-climatic region. The above results are in close conformity with those Kapur et al., (2010), Srinivasappa et al., (1999) and Chandrashekar et al., (2007).

In conclusion, the demand, acceptability and market value of Sarpagandha and Ashwagndha is increasing rapidly for medicinal utility around the globe. The modern scientific agro-cultivation approaches of Ashwagndha and Sarpagandha practiced as an intercrop with different plant spacing under different environmental conditions (Open & shade) has a great impact on successive vegetative growth, yield potential and market profitability in India. Replacing traditional practices, systematic agricultural activities can play a significant role in maintaining the status of environment.

Hence the above experimental findings concluded that Ashwagndha and Sarpagandha when accommodate with different planting distance i.e. T8-S8-Sarpagandha (M2 S4) 50 x 50cm (under Aonla shade condition), T5-S5-Ashwagndha (M2 S1) 60 x 60cm (under Aonla shade condition) and T6-S6-Ashwagndha (M2 S2) 70 x 70cm (under Aonla shade condition) was recorded the best treatment combination in-terms of maximum vegetative growth and Root yield. While the highest economics and B:C ratio (1:4.76) was obtained with treatments T8-S8-Sarpagandha (M2 S4) 50 x 50cm (under Aonla shade condition). Therefore investigation of this research project reveals that Ashwagndha & Sarpagandha are grown as an intercrops which shows high economic returns, more foreign exchange, high benefit: cost ratio.
Whereas these crops are also very much found to be viable, adaptable, tolerant against water stress, heat stress, resistant against several insect-pest & diseases and also they were recommended for its commercial cultivation under existing perennial Aonla orchard.

Acknowledgment

The authors are very much delighted, grateful and thankful to the U.P. Council of Agricultural Research (UPCAR), Lucknow, and Department of Horticulture, Sam Higginbottom University of Agriculture, Technology and Sciences, (SHUATS), Prayagraj (Allahabad), Uttar Pradesh-211007, India for providing all necessary helps, facilities and financial assistance during the course of whole research investigation.

References

Kumar S, Singh D. (2003). Gene effects and genotypes x environment interaction at various growth stages of different biomass characters in Indian mustard.

How to cite this article:

doi: https://doi.org/10.20546/ijcmas.2019.807.248