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Introduction 
 

Abiotic stress is the principal cause of 

decreasing the average yield of major crops 

by more than 50%, leading to the losses worth 

hundreds of million dollars each year (Rasool 

et al., 2013; Lamaoui et al., 2018). Among 

abiotic stresses, high salinity stress is the most 

severe environmental stress, which impairs 

crop production on at least 20% of irrigated 

land worldwide. Out of the 1500 million 

hectares agricultural land, 32 million (2%) is 

affected by secondary salinity of varying 

degrees. Further, problems will be worsened 

as near about 50% of the arable land will hit 

salinity by 2050 (Machado and Serralheiro, 

2017). Extensive economic losses due to 

salinity include costs of $27 billion-plus loss 

of crop value per year (Kumar et al., 2017). 

Salinity affects various morphological and 
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Legumes are an important part of human diet account for about 27% of global primary 

crop production. Pigeon pea is the world’s sixth most important and second most 

important legume pulse crop of India after chickpea and mainly cultivated as rain fed crop. 

Its production is adversely affected due to salinity in arid and semi-arid regions of world. 

Salt stress reduces water potential, creates imbalance in ion concentration and causes 

toxicity. Helicases have been shown to play an important role in plants against salt stress. 

p68 which is a prototype member of DEAD-box helicase interacts with Ca
2+

-CaM, thus 

regulating diverse signalling pathways against salt stress in plants. In the present study, we 

have developed transgenic pigeon pea plants with marker free gene Psp68 for salinity 

tolerance. Since regeneration is prerequisite for transgenic development and pigeon pea is 

considered to be recalcitrant, the transgenic pigeon pea plants containing Psp68 gene have 

been developed using the tissue culture independent transformation method (Patent 

Application No. 201811012099). The putative T0 plants were screened by PCR analysis 

and the PCR positive plants with transformation efficiency of 16% were observed. 

Transgenic lines in T1 generation under salt stress condition showed enhanced tolerance to 

salt stress in terms of various physio-biochemical parameters like relative water content, 

membrane injury index, MDA content, chlorophyll content, proline and total soluble sugar 

content, catalase activity and peroxidase activity. 
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physio-biochemical processes involved in 

plant growth and development (Rahneshan et 

al., 2018). Soluble salts when present in 

excess cause ion toxicity and ion imbalance 

(Munns, 2005) which ultimately lead to plant 

demise (Zorb et al., 2018). In response to high 

salinity stress various genes get up regulated, 

the products of which are either directly or 

indirectly involved in plant protection 

(Shivakumara et al., 2017). Overall, the 

susceptibility or tolerance to high salinity 

stress in plants is a coordinated action of 

multiple stress responsive genes, which also 

cross-talk with other components of stress 

signal transduction pathways. The complexity 

and polygenic nature of salt stress are 

important factors contributing to the 

difficulties in breeding salt-tolerant crop 

varieties (Zhu, 2000; Flowers, 2004; Jangra et 

al., 2017). Understanding these mechanisms 

of stress tolerance along with a plethora of 

genes involved in stress signaling network is 

important to improve high salinity stress 

tolerance in crops plants. Since long 

conventional breeding has been widely used 

to develop stress tolerant and high yielding 

crop plants through screening of tolerant 

germplasm and crossing with cultivated 

varieties but this procedure is time-

consuming, cost and labour intensive (Ashraf, 

2010; Yu et al., 2016) and suffers from a poor 

selectivity, due to transfer of unwanted linked 

traits along with desirable traits. Moreover, 

reproductive barrier and low level of 

variations in genetic pool make it a 

cumbersome technique. To resolve these 

barriers associated with traditional breeding, 

biotechnological approaches such as genetic 

engineering can be employed to obtain better 

results in shorter time. 

 

Transgenic approach is being effectively 

pursued by plant scientists these days to 

impart salinity tolerance in various crop 

plants. Transgenics for salinity tolerance is 

mainly focused on introduction of genes that 

encode ion transport proteins, compatible 

organic solutes, antioxidants and 

transcriptional factors for gene regulation 

(Ashraf et al., 2008). A large number of these 

genetic processes demand the intervention of 

several types of essential enzymes including 

helicases. The helicases are ubiquitous 

enzymes that catalyze the unwinding of 

energetically stable duplex DNA (DNA 

helicases) or duplex RNA secondary 

structures (RNA helicases) (Tuteja, 1997; 

Tuteja, 2000; Tuteja and Tuteja 2004; 

Gustafson and Wessel, 2010; Linder and 

Fuller-Pace, 2013). Helicases might be 

playing an important role in stabilising 

growth in plants under stress by regulating 

stress-induced transcription and translation. A 

hallmark of most of the helicases is the 

existence of a set of highly conserved amino 

acid sequences called ‘helicase-motifs’, which 

are clustered together for helicase function 

(Tuteja and Tuteja, 2004a; 2004b). One of the 

important motifs is DEAD (motif II), which 

stands for Asp-Glu-Ala-Asp. The DEAD-box 

RNA helicases is the largest family of RNA 

helicases. In spite of the sequence 

resemblance of DEAD-box RNA helicases 

within the core helicase regions, each DEAD-

box helicase is believed to play various 

crucial roles in plant growth and development 

(Linder and Jankowsky, 2011). Jiechen, 

(2016) reported that transgenic lines of cotton 

plants overexpressing Apocynumvenetum 

DEAD-box helicase 1 (AvDH1) showed lower 

membrane ion leakage, along with increased 

activity of superoxide dismutase thus 

confering salinity tolerance. In Arabidopsis, 

DEAD-box protein LOS4 (low expression of 

osmotically responsive genes 4) and RCF1 

(regulator of CBF gene expression 1) has 

been validated to be essential in exporting 

mRNA and pre-mRNA splicing by regulating 

the expression of CBF (C-repeat binding 

factor) factor under cold stress conditions 

(Gong et al., 2005; Guan et al., 2013). Three 

DEAD-box RNA helicases AtRH5, AtRH9 
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and AtRH25 also respond to multiple abiotic 

stresses in Arabidopsis (Kant et al., 2007; 

Kim et al., 2008). A rice DEAD-box RNA 

helicase OsBIRH1 (Oryza sativa BTH-

induced RNA helicase 1) was shown to 

function in defense responses against 

pathogen and oxidative stresses (Li et al., 

2008). All these reports suggest roles of plant 

helicases in stress tolerance however, the 

exact role of most plant DEAD-box proteins 

largely remains unclear and requires further 

studies.  

 

The p68 is a prototype member of DEAD-box 

family and it plays a very important role in 

cell/organ development (Stevenson et al., 

1998) and also participates in a variety of 

biological processes in animal system 

including pre-rRNA processing (Liu, 2002; 

Bates et al., 2005; Fuller-Pace, 2006), RNA-

induced gene silencing (Ishizuka et al., 2002), 

transcription initiation (Fuller-Pace, 2006) 

and alternative splicing processes (Kar et al., 

2011). It was also reported that ATPase 

activity of recombinant p68 in yeast was 

stimulated by double-stranded RNA and it 

unwinds RNA in both 3' to 5' and 5' to 3' 

directions (Huang and Liu, 2002. It has been 

reported that p68 RNA helicase is 

phosphorylated on tyrosine, serine, and 

threonine residues and its helicase and 

ATPase activities are stimulated after 

phosphorylation with protein kinase C 

(Pradhan et al., 2005b) which is a general 

cascade to cope with abiotic stresses in plants. 

Wang et al., (2013) reported that p68 also 

interacts with Ca
2+

-CaM regulating diverse 

signalling pathways leading to stress tolerance 

in plants. 

 

Psp68 DEAD-box protein exhibits ATPase 

activity in the presence of both DNA and 

RNA, binds to DNA as well as RNA and 

shows unique bipolar DNA helicase activity 

which suggest that it could be a 

multifunctional protein (Tuteja et al., 2014). 

Psp68 provided salinity stress tolerance in 

transgenic tobacco and transgenic rice by 

reducing oxidative stress and improving 

photosynthesis machinery (Banu et al., 2014). 

However, very little is known about p68 

protein in plant system and it has not been 

functionally or biochemically characterized in 

detail. The role of p68 and molecular target of 

this gene in response to stress tolerance in 

leguminous plants have also not been reported 

so far. 

 

Materials and Methods 

 

Psp68gene, plasmid and Agrobacterium 

tumefaciens strain 

 

Agrobacterium tumefaciens strain LBA4404 

containing pCAMBIA1300 harboring Psp68 

gene was used for genetic transformation 

experiment. This strain with the above 

mentioned gene was procured from Dr. 

Narender K. Tuteja, ICGEB, Delhi 

 

Preparation of Agrobacterium inoculum 

harboring pCAMBIA1300-Psp68 plasmid 

and Agrobacterium- mediated 

transformation of pigeon pea with Psp68 

gene 
 

A single colony from fresh bacterial culture 

raised from glycerol stock culture carrying 

The Agrobacterium strain LBA4404 was 

inoculated in 20 ml LB medium broth 

supplemented with kanamycin (50 mg/ml), 

streptomycin (50 mg/ml) and rifampicin (50 

mg/ml) and incubated at 28˚C on orbital 

shaker overnight (100 rpm). 

 

Transgenic pigeon pea plants containing 

Psp68 gene were developed using the 

protocol for which patent has been filed 

(Patent Application No.- 

201811012099).Transformation efficiency 

was calculated based on the PCR analysis of 

putative T0 plants. 
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Molecular analysis of the transformants  

 

Total genomic DNA was isolated from young 

leaves of wild type and transformed plants 

following the CTAB method (Saghai-Maroof 

et al., 1984).PCR analysis was performed to 

amplify fragments of Psp68 gene using gene 

specific primers. Reactions were carried out 

in 20μl reaction mixture containing 50 ng 

DNA, 2μl of 10 X PCR buffer (G-

Biosciences) with MgCl2, 0.5μl of 10 mM of 

each forward and reverse primer, 0.5μl of 10 

mM dNTP and 2.5U Taq DNA polymerase. 

The DNA extracted from wild type plants was 

used as a negative control, the pCAMBIA 

1300-Psp68 as a positive control while the 

reaction mix without DNA as water blank. 

The PCR reaction profile comprised of 35 

cycles, with strand separation at 95˚C for 4 

min, annealing at 52.5 ˚C for 30 s and 

extension at 72 ˚C for 1 min. The program 

was extended for 10 min at 72 ˚C. The 

products were electrophoresed on a 1.5% 

agarose gel, stained with ethidium bromide 

and visualized under ultraviolet light 

(Sambrook et al., 1989). 

 

Physio-biochemical analysis of transgenic 

plants under salt stress 
 

Transgenic and non-transgenic pigeon pea 

plants were raised under pot culture 

conditions in dune sand and were subjected to 

75mM NaCl stress 15 days after sowing. 

Various physio-biochemical parameters like 

relative water content, chlorophyll content, 

electrolyte leakage, lipid peroxidation, proline 

content, total soluble sugar content, catalase 

and peroxidase activity were recorded 4 days 

and 8 days after treatment. 

 

Statistical Analysis 

 

All the experiments were performed in 

triplicates and statistical analysis was carried 

out on physiological data recorded on T1 

generation using two factorial CRD 

(Completely Randomized Design) test in 

OPSTAT programme (Sheoran et al., 1998). 

 

Results and Discussion 

 

Development of transgenic pigeon pea 

plants carrying Psp68 gene transformation 

of pigeon pea var. Manak using Psp68 gene 
 

The transgenic pigeon pea plants carrying 

Psp68 gene were developed using an efficient 

Agrobacterium-mediated transformation 

protocol for which a patent has been filed 

(Kharb et al., 2018 Patent Application 

No.201811012099) (Fig. 1). 

 

Molecular characterization of transgenic 

pigeon pea plants carrying Psp68 gene 

 

The putative transgenic plants were screened 

for the presence of Psp68 gene in T0 

generation through PCR using gene-specific 

primers. An amplified fragment of 1.8 kb 

confirmed the presence of Psp68 gene in the 

plasmid DNA. Out of 100 plants screened for 

the presence of Psp68 gene, 16 plants showed 

a clear and sharp band of 1.8 kb, representing 

a transformation efficiency of 16% (Fig. 2A). 

  

PCR analysis of T1 transgenic pigeon pea 

plants carrying Psp68 gene 
 

Seeds collected from T0 generation plants 

were sown in transgenic greenhouse to raise 

T1 generation. T1 generation plants (ten plants 

from T0 each line) were screened through 

direct PCR kit (Phire plant direct PCR kit) 

using gene-specific primers. PCR analysis 

showed the amplification of 540 bp fragment 

in the transgenic plants (Fig. 2B).  

 

Evaluation of transgene efficacy in salt 

stress tolerance through physio-

biochemical analysis 

 

Healthy PCR positive T1 generation plants 

were selected for physio-biochemical analysis 
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to study transgene efficacy under salt stress. 

Various stress indices like chlorophyll 

content, relative water content, electrolyte 

leakage, lipid peroxidation, proline content, 

total soluble sugar content, catalase and 

peroxidase activity were estimated for the 

selected transgenic plants after 4
th

 and 8
th

day 

of 75 mM salt treatment. 

  

Effect of Salinity stress on Chlorophyll 

content and Relative water content  

 

To access the effect of salinity on Chlorophyll 

(Chl), Chl a, Chl b, total Chl and Chl a: b was 

measured in transgenic lines and WT plants. 

Salinity stress (75 mM NaCl) significantly 

reduced the Chla, Chlb and total Chl in 

transgenic lines and WT plants but the extent 

of reduction was higher in WT than 

transgenic lines. The minimum chlorophyll 

content was observed in wild type plants 4 

DAT (0.22 mg/g FW) and 8 DAT (0.20 mg/g 

FW) under 75mM NaCl salt stress whereas 

chlorophyll content was 0.29 mg/g FW (4 

DAT) and 0.24 mg/g FW (8 DAT) in wild 

type control (non stressed) plants. Transgenic 

line 53, showed highest chlorophyll content 

on 4 DAT (0.56 mg/g FW) and 8 DAT (0.55 

mg/g FW) under 75mM NaCl salt stress (Fig. 

3A) Relative water content too has a 

significant influence on photosynthesis 

(Surender et al., 2013), a reduction by 5% in 

RWC leads to reduction in photosynthesis by 

40 to 50% Slatyer (1955).  

 

Relative water content of the transgenic and 

wild-type plants decreased under stress 

conditions. The minimum relative water 

content was observed in wild type plants 4 

DAT (42.86%) and 8 DAT (23.09%) under 75 

mM NaCl salt stress whereas relative water 

content was 71.46% (4 DAT) and 69.51% (8 

DAT) in wild type control plants. RWC 

increased 0.72 fold 4 DAT and 1.99 fold 8 

DAT in transgenic line 53 over wild-type 

under stress (Fig. 3B). 

Less oxidative stress in T1 transgenic 

pigeon pea plants  

 

Abiotic stresses including salinity cause 

overproduction of ROS, which leads to 

oxidative stress in plants. Therefore, the 

indicators of oxidative stress such as lipid 

peroxidation, electrolyte leakage were studied 

in Psp68 expressing transgenic lines and WT 

plants (Figure 4 A-B). High concentration of 

salt (75 mM NaCl) significantly increased the 

extent of oxidative damage and it was 

significantly higher in WT as compared to 

Psp68 carrying transgenic pigeon pea lines. 

Electrolyte leakage and lipid peroxidation 

increased in the transgenic and wild-type 

plants under stress conditions. The maximum 

electrolyte leakage was observed in wild type 

plants 4 DAT (72.55%) and 8 DAT (80.96%) 

under 75mM NaCl salt stress whereas 

electrolyte leakage was 32.57% (4 DAT) and 

39.06% (8 DAT) in wild type control plants. 

The minimum electrolyte leakage was 

observed in transgenic line 53, 4 DAT 

(18.77%) and 8 DAT (27.67%) under 75mM 

NaCl salt stress. Under stress transgenic 

plants were able to maintain lower electrolyte 

leakage as compared to wild-type plants. The 

highest lipid peroxidation was observed in 

wild type plants 4 DAT (3.28μmol/g FW) and 

8 DAT (3.88μmol/g FW) under 75 mM NaCl 

salt stress whereas lipid peroxidation was 

1.38μmol/g FW (4 DAT) and 1.49μmol/g FW 

(8 DAT) in wild type control (non stress) 

plants. Transgenic plants were able to 

maintain lower MDA content as compared to 

wild-type plants under stress conditions. Lipid 

peroxidation in transgenic line 53 was 

decreased by 69.40% 4 DAT and 63.61% 

8DAT over wild-type under stress conditions.  

 

Effect of salt stress on osmolytes in wild 

type and T1 Transgenic pigeon pea plants  
 

All plants produce higher levels of osmolytes 

in the cytosol and other organelles to 

http://biopublisher.ca/index.php/ijh/article/html/850/#ckwx
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overcome the negative impact of osmotic 

stress (Ahmad et al., 2016; Latef and 

Miransari, 2014). Total soluble sugars 

maintain cell homeostasis under abiotic 

stresses by acting as osmolytes (Rosa et al., 

2009) and accumulation of proline under 

stress conditions might serve as a sink for 

excess reductants, providing the NAD
+
 and 

NADP
+
 necessary for maintenance of 

respiratory and photosynthetic processes 

(Kishor et al.,, 2005) and has been considered 

as an acclamatory mechanism of salt stress 

(Hayat et al., 2012). Both transgenic and 

wild-type plants showed increase in total 

soluble sugar and proline content under stress 

conditions. The minimum total soluble sugar 

content was observed in wild type plants 4 

DAT (56.53 mg/g FW) and 8 DAT (61.20 

mg/g FW) under 75mM NaCl salt stress 

whereas the total soluble sugar content was 

51.93 mg/g FW (4 DAT) and 53.73 mg/g FW 

(8 DAT) in wild type control (non stressed) 

plants.. Total soluble sugar increased by 

22.7% 4 DAT and 21.4 % 8DAT in 

transgenic line 53 over wild-type under stress. 

The minimum proline content was observed 

in wild type plants 4 DAT (1.73 μmol/g FW) 

and 8 DAT (1.88μmol/g FW) under 75 

mMNaCl salt stress whereas the proline 

content was 0.433 μmol/g FW (4 DAT) and 

0.61 μmol/g FW (8 DAT) in wild type control 

plants. Proline content increased by 2.4 fold 4 

DAT and 2.2 fold 8 DAT in transgenic line 53 

over wild-type under stress. Under stress 

conditions, the transgenic line 53 maintained 

maximum total soluble sugar and proline 

content (Fig. 5A-B). 

 

Psp68 Enhances ROS Scavenging Capacity 

in T1 Transgenic pigeon pea plants 

 

Salinity stress is known to cause ROS induced 

oxidative damage in plant cells. Therefore, we 

analyzed the response of enzymatic 

antioxidants like catalase and peroxidase inT1 

transgenic lines and WT plants under salinity 

stress. Antioxidant defense machinery 

protects the plant cells from ROS induced 

oxidative damage. Catalase and peroxidase 

activity of both transgenic and wild-type 

plants increased under stress conditions. The 

minimum catalase activity was observed in 

wild type plants 4 DAT (6.34 units/g FW) and 

8 DAT (8.11 units/g FW) under 75mM NaCl 

salt stress whereas the catalase activity was 

3.80 units/g FW (4 DAT) and 4.55 units/g 

FW (8 DAT) in wild type control plants. The 

highest catalase activity was observed in 

transgenic line 53, 4 DAT (22.58 units/g FW) 

and 8 DAT (26.15 units/g FW) under 75mM 

NaCl salt stress. Catalase activity in the 

transgenic line 53 increased by 2.5 fold 4 

DAT and 2.2 fold 8 DAT over wild-type 

under stress. The minimum peroxidase 

activity was observed in wild type plants 4 

DAT (0.159 units/g FW) and 8 DAT (0.165 

units/g FW) under 75mM NaCl salt stress 

whereas the peroxidase activity was 0.046 

units/g FW (4 DAT) and 0.050 units/g FW (8 

DAT) in wild type control (non stress) plants. 

The highest peroxidase activity was observed 

in transgenic line 53, 4 DAT (0.50 units/g 

FW) and 8 DAT (0.55 units/g FW) under 

75mM NaCl salt stress. Peroxidase activity 

increased by 2.14 fold 4 DAT and 2.33 fold 8 

DAT in transgenic line 53 over wild-type 

under stress (Fig.6A-B).  

 

Effect of 75mM NaCl salt stress on wild-

type and transgenic pigeon pea plants 

 

Wild-type plants died as they were not able to 

tolerate salt concentration of 75mM NaCl 

whereas transgenic plants survived under 

stressed conditions (Fig.7). 

 

Genetically modified (GM) crop plants are 

the fastest recognized technology in 

agriculture (James, 2010) but biosafety issue 

is a crucial factor for the development of 

transgenics and global applications of 

different genetically modified products. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332610/#mcu239-B97
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332610/#mcu239-B97
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332610/#mcu239-B97
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Horizontal transfer of antibiotic-resistance 

genes to animal and human gut bacteria seem 

as major biosafety concerns in GM crops 

(Dale et al., 2002).Therefore, it is required to 

develop new techniques for the production of 

‘clean’ marker-free transgenic plants. In the 

present study, marker-free transgenic pigeon 

pea plants have been developed against 

salinity stress by introducing Psp68 gene 

through a rapid, simple and efficient 

transformation system which bypasses the 

tissue culture procedures. Transformation 

following the characterization using PCR 

represented transformation frequency of 

16.0%. 

 

Salinization is recognized as the main threat 

to environmental resources and human health 

in many countries, affecting almost 1 billion 

ha worldwide/globally (Metternicht and 

Zinck, 2003). The production and 

productivity of pigeon pea is adversely 

affected by salinity suggesting it as a salt 

sensitive leguminous crop (Tayyab et al., 

2016). Advances in molecular and genomic 

tools have been widely applied to understand 

the mechanism underlying stress tolerance. 

Further, the release of pigeon pea genome 

sequence has paved a way to modify pigeon 

pea with desired genes to improve salinity 

tolerance (Varshney et al., 2012). Engineering 

crop plants with improved salinity tolerance 

rely on expression of genes that are involved 

in signaling and regulatory pathways (Wang 

et al., 2018) or genes that code for proteins 

involved in stress tolerance (Assaha et al., 

2017) or enzymes that regulate pathways 

involved in synthesis of functional and 

structural metabolites (Anjaneyulu et al., 

2014). It is evident many genes including 

DEAD-box helicases get triggered by stress, 

which play a crucial role in various abiotic 

stresses. Banu et al., (2014) reported that the 

transcript of Psp68 is accumulated at a high 

level and almost equally in every part (roots, 

leaves, tendrils and flowers) of the pea plant. 

Therefore, this gene could be a potential 

candidate for developing stress-tolerant 

transgenic plants. The Psp68 protein contains 

all conserved domains that are characteristic 

of the DEAD-box proteins including ‘Q’ and 

‘GG’ motif(Tanner et al.,) In plant the first 

report of stress induced helicase gene came by 

cDNA microarray analysis of 1300 

Arabidopsis genes where the authors reported 

a DEAD-box helicase gene (accession 

number AB050574) as a cold stress-inducible 

gene suggesting a new role of helicases in 

stress signalling (Seki et al.,). Later, many 

plant DEAD-box helicases were identified 

and found to be activated in response to 

changing environmental conditions (Owttrim, 

2006;Vashisht and Tuteja, 2006; Gill et al., 

2013; Mahajan and Tuteja,2005) In barley, a 

salt-responsive transcript HVD1 is induced 

under salt stress, cold stress, and ABA 

treatment (Nakamura et al., 2004). AvDH1 is 

another DEAD-box helicase gene from the 

halophyte dogbane plant that also strongly 

upregulated in response to salinity and low 

temperature (Liu et al., 2008). Under normal 

growth conditions relatively high level of 

basal expression of the pea p68 gene in 

different plant parts implies its function in 

growth and/or development processes. Under 

salt treatment, a single species of pea p68 

mRNA was detected abundantly and 

constitutively in the tissues examined. This 

indicated that basic activity of cells might be 

regulated by pea p68 under salt stress. 

 

Genome-wide expression analysis of many 

DEAD-box helicase genes have been 

identified and suggested that these genes 

might be stress regulated (Kant et al., 2005). 

Overexpression analysis in different DEAD-

box helicases has been shown to provide 

multiple abiotic stress tolerance in crop plants 

by regulating different signalling pathways 

(Vashisht et al., 2005; Mishra et al., 2005; 

Tuteja et al., 2013). For example, 

overexpression of PDH45 and OsSUV3 gene 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336437/#b0225
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336437/#b0225
https://www.ncbi.nlm.nih.gov/nuccore/AB050574
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provided salinity stress tolerance in tobacco 

and rice respectively (Mishra et al., 2005; 

Tuteja et al., 2013). LOS4 and RCF1 mutant 

analysis in Arabidopsis was found to play an 

important role in response to cold and heat 

stress (Gong et al., 2005; Guan et al., 2013). 

In our study, we showed that marker free 

Psp68 provides salinity stress tolerance in 

pgeon pea. 

 

The reduction in leaf chlorophyll content 

under abiotic stress has been attributed to the 

destruction of chlorophyll pigments in various 

crop plants (Tuteja et al., 2012; Zhang et al., 

2012; Huda et al., 2013). We observed that 

stress-induced chlorophyll loss was enhanced 

in WT plant while transgenic lines retained 

more chlorophyll. This finding has strong 

correlation with the previous studies in other 

DEAD-box helicases (Mishra et al., 2005; 

Dang et al., 2011; Sahoo et al., 2013). Hence 

it indicates the expression of Psp68 gene 

could have positive effects on the growth and 

photosynthetic metabolism process. Under 

salt stress conditions, plants usually adjust 

their osmotic potential to maintain turgor 

pressure (Boyer et al., 2008) thus maintaing 

cellular hydration levels.In present 

investigation, decrease in RWC was observed 

in both WT and transgenic plants with salt 

treatment but decline in RWC was more in 

wild-type plants under 75 mM NaCl stress as 

compared to transgenic plants. 

 

Stress also leads to the rapid production of 

ROS including H2O2 in plant tissues that 

ultimately cause damages to the cell 

membrane and other cellular components 

such as plasma membrane, mitochondria and 

chloroplasts (Gill et al., 2013; Huda et al., 

2013). Hence, to avoid any stress-induced 

injuries plant needs to develop efficient 

mechanism to remove excess ROS from cells. 

Enzymatic ROS-scavenging and non-

enzymatic antioxidants system are such 

mechanisms in the plant cells that prevent 

ROS induced oxidative damage (Gill et al., 

2010; Gill et al., 2012; Bhattarcharjee, 2012). 

Catalase and peroxidase are the major 

enzymes that are known to be involved in 

scavenging of cellular production of H2O2 

(Willekens et al., 1994; Noctor and Foyer, 

1998). 

 

 

Fig.1 Vector map of the binary vector pCAMBIA 1300 carrying Psp68 gene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 PCR analysis of transformants (A) 1.5 % agarose gel showing amplification of 1.8 kb 
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fragment of Psp68 gene. (B) 1.5 % agarose gel showing amplification of 540 bp fragment of 

Psp68 gene in T1 generation plants.  Lanes L-1 kb ladder, PC: Positive Control (Plasmid DNA), 

NC: Negative Control (Genomic DNA of wild-type) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 (A) Effect of 75 mM salt stress on chlorophyll content and (B) Relative water content in 

wild-type and T1 transgenic pigeon pea plants 

 
Fig.4 Effect of 75 mM salt stress on (A) electrolyte leakage and (B) MDA content in wild-type 

and T1 transgenic pigeon pea plants 

 

Fig.5 Effect of 75 mM salt stress on (A) Total soluble sugar content (B) Proline content in wild-
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type and T1 transgenic pigeon pea plants 

 

 

Fig.6 Expression of Psp68 showed less oxidative damage by modulating the ROS machinery 

under salinity stress. (A) Catalase activity (B) Peroxidase activity in wild-type and T1 transgenic 

pigeon pea plants under 75mM Salt stress 

 

 

Fig.7 Effect of 75mM NaCl salt stress on wild-type and transgenic pigeon pea plants 
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Interestingly in this study the activity of these 

enzymes increased in transgenic lines in 

response to stress treatment indicating that 

transgenic lines could readily scavenge H2O2 

either decomposing it through increased 

activity of catalase or peroxidase. Previously, 

a number of overexpression studies have 

shown an increased activity of catalase and 

peroxidase in response to abiotic stress 

treatment (Jiang et al., 2002; Luna et al., 

2004; Mhamdi et al., 2010; Gill et al., 2013). 

Moreover, plants produce higher levels of 

osmolytes in the cytosol and other organelles 

to overcome the negative impact of osmotic 

stress (Ahmad et al., 2016; Latef and 

Miransari, 2014). Increase in total soluble 

sugars helps to bring down the osmotic 

potential of cell sap below that of growing 

medium, enabling the uptake of water by cells 

under salt stress (Benzarti et al., 2014) and 

accumulation of proline under stress has been 

considered as an acclamatory mechanism of 

salt stress (Hayat et al., 2012). In present 

investigation, salt stress resulted in 

accumulation of proline and total soluble 

sugars in both wild-type and transgenic 

pigeon pea plants. 

 

In conclusion, the involvement of DEAD-box 

helicases in various metabolic processes in 

plant cells might have general implications. 

The present study provides new insights into 

the novel function of marker free Psp68 gene 

in conferring salinity stress tolerance in 

transgenic pigeon pea plant. Salt stress 

affected the various physio-biochemical 

parameters resulting in decrease in 

chlorophyll and relative water content and an 

increase in electrolyte leakage, peroxidation, 

total soluble sugar content and proline 

content. The activity of antioxidant enzymes, 

catalase and peroxidase increased with salt 

stress. Among all the transgenic lines, line 53 

was found promising for salt tolerance in 

terms of various physio-biochemical 

parameters studied under salt stress 

conditions. This study showed the role of 

Psp68 coding for DEAD Box RNA helicase 

in mitigating salt stress as transgenic plants 

performed well under salt stress conditions. 
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