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Introduction 
 

Black pepper is an important spice crop in the 

Karnataka state. The analysis of price over 

time is important for formulating a sound 

agricultural price policy. Agricultural prices 

give the signal to both producers and 

consumers regarding the level of production 

and consumption. Changes in the relative 

prices of the various agricultural commodities 

affect the allocation of resources among 

agricultural commodities by the producers. 

Agricultural price movements have been a 

matter of serious concern for policy makers in 

our country as the behaviour of agricultural 

prices adversely affects the steady economic 

development. Among other things, price plays 

a strategic role in influencing the cultivation 

of pepper. Indeed, the price analysis of pepper 

assumes greater significance not only to the 
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The study was conducted to forecast the price of black pepper in one of the major markets 

of Karnataka state as the state ranks first position in production of pepper in India. The 

Gonikoppal market in Kodagu district was selected purposively on the basis of highest 

area and production in the state. The monthly prices of black pepper in Gonikoppal market 

were collected from the Karnataka State Agricultural Marketing Board, Bangalore, 

Karnataka state for the year 2008-09 to 2017-18. The time-series models such as ARIMA 

and ARCH models were applied to price data using software’s such as SPSS, Gretl and 

EViews. The Augmented Dickey-Fuller test and Heteroscedasticity Lagrange’s Multiplier 

test were used to test the stationarity and volatility of the time-series respectively. The best 

forecasted model was determined based on the lowest values of Akaike’s Information 

Criterion (AIC) and Schwartz Bayesian Information Criterion (SBIC). However, the 

predictability power, performance and quality of the model was measured based on the 

lowest error value of the Root Mean Square Error (RMSE) and Mean Absolute Prediction 

Error (MAPE). Among the tested models the prediction accuracy of the ARIMA model 

was higher than ARCH family models. On the basis of the results, the ARIMA (0,1,1) 

provide a good fit for forecasting the price of black pepper. 
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policy makers but also to producers and 

consumers. The black pepper prices have been 

highly fluctuating over the years. An increase 

in price of pepper affects the consumer by way 

of increase in food consumption budget, while 

a decrease in pepper prices below the cost of 

cultivation affects the producer. No studies 

have been conducted on forecasting the price 

of black pepper so far. In this context, it is 

necessary to know to what extent the prices 

are being fluctuated and to draw meaningful 

policy conclusion. Hence, the study focuses on 

the objective to forecast the black pepper price 

by using various time-series models.  

 

Bhardwaj et al., (2014) applied the ARIMA 

models and GARCH models for forecasting 

the spot prices of Gram at Delhi market. They 

were procured the secondary data for a period 

of 01 January 2007 to 19 April 2012 from 

NCDEX website. The AIC and SIC values 

from GARCH model were smaller than that 

from ARIMA model. Therefore, the GARCH 

(1,1) model was found better model in 

forecasting spot price of Gram.  

 

Seyed Jafar Sangsefidi et al., (2015) applied 

the ARIMA models and GARCH models for 

forecasting the prices of agricultural products, 

including potato, onion, tomato and veal. The 

results of the ARIMA model and ARCH 

models were compared. The results showed 

that the estimation due to ARIMA method has 

less relative error than the estimation through 

the ARCH model. The ARIMA model 

outperformed than ARCH model.  

 

Naveena (2016) studied the various time series 

models for forecasting of price and export of 

Indian coffee. In his study, the forecasting 

models like Exponential Smoothing, 

Autoregressive Integrated Moving Average 

(ARIMA), Generalized Auto Regressive 

Conditional Heteroscedastic (GARCH) and 

Artificial Neural Network (ANN) models 

were developed for price and export study. 

The RMSE and MAPE were used to assess the 

reliability of the various forecasting models. 

The results showed that ARIMA (0,1,1)(0,0,0) 

model is best for Indian Arabica price, AR(3)-

GARCH (3,1) models were best for Robusta 

coffee price and for Indian coffee export ANN 

model performed better than others. 

 

Verma et al., (2016) studied the forecasting of 

coriander prices in Rajasthan by using 

ARIMA models. To test the reliability of 

models AIC, BIC and MAPE were used. On 

comparing the alternative models, it was 

observed that AIC (2141.14), BIC (2147.09) 

and MAPE (6.38) were least for ARIMA 

(0,1,1) model, hence it is best model. 

Therefore it was observed that most 

representative model for the price of coriander 

in Ramganjmandi of Rajasthan. 

 

Materials and Methods 

 

The study was conducted to forecast the price 

of black pepper in Gonikoppal market of 

Kodagu district, Karnataka state, where the 

district was selected based on highest area and 

production. The secondary data pertaining to 

monthly price (in Rs./Quintal) of black pepper 

for the period of 2008-09 to 2017-18 were 

collected from Karnataka State Agricultural 

Marketing Board (KSAMB), Bangalore, 

Karnataka State. To forecast the price, the 

ARIMA and ARCH models have been used 

which are linear and non-linear models 

respectively. 

 

ARIMA models 

 

The ARIMA stands for Autoregressive 

Integrated Moving Average. This technique is 

used to forecast future values of a time-series 

based on completely its own past values. The 

first thing is to note that, most of the time-

series are non-stationary and the ARIMA 

model refers only to a stationary (Box et.al. 

2015). The ARIMA models are the 
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combinations of the autoregressive (AR), 

integration (I) - referring to the reverse 

process of differencing to produce the forecast 

and moving average (MA) operations. An 

ARIMA model is usually stated as ARIMA (p, 

d, q). This represents the order of the 

autoregressive components (p), the number of 

differencing operators (d) and the highest 

order of the moving average terms (q).  

 

The simplest example of a non-stationary 

process which reduces to a stationary one after 

differencing is random walk. A process { } is 

said to follow an Integrated ARMA model, 

denoted by ARIMA (p, d, q), if 

 is ARMA (p, q).  

 

The model is written as 

 

 

where , WN indicating White 

Noise. The integration parameter d is a non-

negative integer. When d = 0, ARIMA (p, d, 

q) ≡ ARMA (p, q). 

 

The main stages in setting up an ARIMA 

forecasting model are: Identification of 

models, estimating the parameters, diagnostic 

checking and forecasting. 

 

Identification of Models 
 

A good starting point for time series analysis 

is a graphical plot of the time-series. The 

foremost step in the process of modeling is to 

check for the stationarity of the series, as the 

estimation procedures are available only for 

stationary series. We can use Augmented 

Dickey-Fuller (ADF) test or Unit root test to 

check stationarity in the time-series, where the 

null hypothesis is that, there is a unit root or 

the time series under consideration is non-

stationary. If the value of p is greater than 0.05 

we have to accept the null hypothesis, then the 

hypothesis is tested by performing appropriate 

differencing of the data in d
th

 order and 

applying the ADF test to the differenced time 

series data, until reject the null hypothesis. 

Another way of checking the stationarity is 

estimated with Autocorrelation Function 

(ACF) and Partial Autocorrelation Function 

(PACF). If ACF decay towards zero and 

PACF has significant spike at first lag which 

indicates series is non-stationary. If ACF and 

PACF spikes becomes abruptly cut off to zero 

which indicates series is stationary. The non-

stationary time-series can be converting into 

stationary by differencing the original series 

using difference technique. 

 

For the stationary series, the tentative models 

were identified based on examination of the 

ACF and PACF. The minimum Akaike’s 

Information Criterion (AIC) and Schwartz 

Bayesian Information Criterion (SBIC) are 

used to select the best model from the set of 

tentative models. 

 

 
 

 
 

where, L = Maximum Likelihood, m = No. of 

parameters, n = No. of observations,  
 

Estimation of parameters 
 

Using the Maximum Likelihood Estimation 

(MLE) method, the parameters of the selected 

model with standard error are estimated (Fan 

and Yao, 2003). 
 

Diagnostic checking 

 

After having the estimated parameters of a 

selected model, it is necessary to do diagnostic 

checking to verify that the model is adequate 

or not. If the model is found to be statistically 

inadequate the whole process of identification, 

estimation and diagnostic checking is repeated 

until a suitable model is found. To know the 

goodness of the fitted model we can use 
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various methods like, ACF and PACF plots of 

residuals, histogram of residuals, normality Q-

Q plot of residuals and Ljung-Box ‘Q’ statistic 

for residuals. The Ljung-Box ‘Q’ statistic is 

distributed approximately as a Chi-square 

statistic. If the p-value associated with the ‘Q’ 

statistic is large (p > 0.05), then the model is 

considered adequate.  

 

Forecasting 
 

The accuracy of forecasts was tested using 

Root Mean Square Error (RMSE) and Mean 

Average Percentage Error (MAPE). Lastly, 

the final model is used to generate the 

predictions about the future values. 

 

ARCH family models  

 

If the time-series consist volatility, the 

variance changes through time, thus study 

uses Autoregressive Conditional 

Heteroscedasticity (ARCH) family models. If 

there is a volatility or ARCH effect in the 

time-series, we can run the ARCH family 

models viz., ARCH, GARCH, EGARCH and 

TGARCH models. 
 

ARCH model 

 

The most promising parametric non-linear 

time series model is Autoregressive 

Conditional Heteroscedasticity (ARCH) 

model. It was one of the first models that 

provided a way to model conditional 

heteroscedasticity in volatility. The ARCH 

model allows the conditional variances to 

change over time as a function of squares past 

errors leaving the unconditional variance 

constant. The ARCH(q) model for the series 

{εt} is defined by specifying the conditional 

distribution of εt (error) given the information 

available up to time t-1.  
 

The ARCH (q) model for the series {εt} is 

given by  
 

   

 
 

where,  >0 and i ≥ 0, for all i and 

 are required to be satisfied to 

ensure non-negative and finite unconditional 

variance of stationary {εt} series.  
 

GARCH model 

 

The ARCH model has some drawbacks. 

Firstly, when the order of ARCH model is 

very large, estimation of a very large number 

of parameters is required. Secondly, 

conditional variance of ARCH(q) model has 

the property that unconditional autocorrelation 

function of squared residuals, if exists, decays 

very rapidly compared to what is typically 

observed, unless maximum lag q is large. To 

overcome these difficulties, the Generalized 

Autoregressive Conditional Heteroscedasticity 

(GARCH) model has been developed; in 

which conditional variance is also a linear 

function of its own lags. This model is also a 

weighted average of past squared residuals, 

but it has declining weights that never go 

completely to zero. It gives parsimonious 

models that are easy to estimate and, even in 

its simplest form, has proven surprisingly 

successful in predicting conditional variances.  

 

The GARCH (p, q) model for the series { } is 

given by 

 

  {  

 

 
 

Where, >0, ,  and 

  

Where, and  
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EGARCH model 

 

Both the ARCH and GARCH models are able 

to represent the persistence of volatility, the 

so-called volatility clustering but both the 

models assume that positive and negative 

shocks have the same impact on volatility.  
 

It is well known that for financial asset 

volatility the innovations have an asymmetric 

impact. To be able to model this behavior and 

to overcome the weaknesses of the GARCH 

model, the first extension to the GARCH 

model has been developed, called the 

Exponential GARCH (EGARCH). 

 

The EGARCH model for the series {εt} is 

given by 

 

  {  

 

 
 

Here, no restrictions are imposed on the 

parameters to guarantee a non-negative 

conditional variance. The EGARCH model is 

able to model the volatility persistence, mean 

reversion as well as the asymmetrical effect. 

To allow for positive and negative shocks to 

have different impact on the volatility is the 

main advantage of the EGARCH model 

compared to the GARCH model. 

 

TGARCH model 

 

An alternative way of modeling the 

asymmetric effects of positive and negative of 

series was presented by Glosten, Jagannathan 

and Runkle (1993) and resulted so called GJR-

GARCH model or Threshold GARCH 

(TGARCH).  

 

The TGARCH model for the series {εt} is 

given by 

  {  

 

 
 

Where, >0, , ,  to 

guarantee that the conditional variance is non-

negative. The properties of the TGARCH 

model are very similar to the EGARCH 

model, where both are able to capture the 

asymmetric effect of positive and negative 

shocks.  

 

The following are the main stages in 

forecasting using ARCH family models: 

Identification of Models, Estimation of 

Parameters, Diagnostic Checking and 

Forecasting 

 

Identification of models  

 

A good starting point for time series analysis 

is a graphical plot of the time-series. The 

foremost step in the process of modeling is to 

check for the stationarity of the series, as the 

estimation procedures are available only for 

stationary series. We can use ADF test to 

know the presence of stationarity.  

 

If the model is found to be non-stationary, 

stationary could be achieved by differencing 

the series. In this step, we have to test the 

volatility or ARCH effect in the time-series 

data using the Heteroscedasticity Lagrange’s 

Multiplier test (Tsay, 2005) or ARCH LM 

test. In this ARCH LM test, the null 

hypothesis is that, there is no ARCH effect or 

volatility. If the value of p (w.r.t. chi-square) 

is less than 0.05, then only we can run ARCH 

family models for the stationary series, 

otherwise we cannot.  

 

The minimum AIC and SBIC are used to 

select the best model from the set of ARCH, 

GARCH, EGARCH and TGARCH models. 
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Estimation of parameters  

 

At the identification stage one or more models 

are tentatively chosen that seem to provide 

statistically adequate representations of the 

available data. Using the MLE method, the 

parameters of the selected model with 

standard error are estimated (Fan and Yao, 

2003). 
 

Diagnostic checking  

 

It is necessary to do diagnostic checking to 

verify that the selected model is adequate or 

not. If the model is found to be statistically 

inadequate the whole process of identification, 

estimation and diagnostic checking is repeated 

until a suitable model is found. To know the 

goodness of the fitted model we can use 

methods like, Serial Correlation LM test and 

Normality test for residuals.  

 

The Serial Correlation LM test for residuals is 

same as that of Heteroscedasticity Lagrange’s 

Multiplier test, but the null hypothesis is that 

there is no serial correlation in the residuals. If 

the value of p (w.r.t. chi-square statistic) is 

greater than 0.05, then accept the null 

hypothesis. In the Normality test for residuals, 

the null hypothesis is that the residuals are 

normally distributed. If the value of p (w.r.t. 

Jarque-Bera statistic) is greater than 0.05, then 

accept the null hypothesis.  

 

Forecasting  

 

The accuracy of forecasts was tested using 

RMSE and MAPE. Lastly, the final model is 

used to generate the predictions about the 

future values. 

 

Results and Discussion 

 

In this study, the time-series models were 

fitted on price of black pepper. The objective 

of fitting multiple time series models on the 

data is to obtain reliable forecasts on the basis 

of statistical measures. 

 

ARIMA models  

 

The monthly price data of black pepper in 

Gonikoppal market for the period from 2008-

09 to 2017-18 were used to choose the 

ARIMA models for forecasting using Gretl 

Software. 

 

The upward trend in the price was observed 

from Figure 1. The plots of ACF and PACF of 

price are presented in Figure 2; it is observed 

that the decay rate for the ACF of the time-

series is very low and the PACF abruptly falls 

down after first lag. This indicates existence of 

non-stationarity in the time-series. The non-

stationary time-series can be converting into 

stationary by differencing the original series 

using difference technique. But after 

differencing of the original series, the decay 

rate becomes high and price series become 

stationary (Fig. 3). To this end, ADF test was 

used to test the stationarity (Table 1), it was 

found to be non-stationary for level series and 

stationary for first differenced series. And also 

it can be observed from the ACF (Fig. 2), 

there is no significant lag between 1 to 12 

lags, which shows the absence of seasonality 

in the time-series. 

 

From the examination of the ACF and PACF 

plots of the first differenced time-series, the 

tentative models were identified, which are 

presented in Table 2. On basis of minimum 

AIC (2359.88) and SBIC (2368.22) values, the 

ARIMA (0, 1, 1) model is selected as best 

model among all the tentative models. The 

parameters of the selected ARIMA (0, 1, 1) 

model with standard error were estimated 

using MLE and presented in Table 3.  

 

Residual analysis was carried out to check the 

adequacy of the model. The adequacy of the 

model is judged based on the value of Ljung-
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Box ‘Q’ statistic. The Q-statistic value 

(22.726) was found to be non-significant 

(Table 4) indicating white noise of time-series 

and also ACF and PACF plots of residuals 

(Fig. 4), Histogram of residuals (Fig. 5) and 

Normality Q-Q plot of residuals (Fig. 6) 

indicates white noise of the time-series. Thus, 

these results suggest that, the model ARIMA 

(0, 1, 1) is adequate. Further, it is confirmed 

that, in SPSS software, using Expert Modeler 

option, the ARIMA (0, 1, 1) model was found 

to be the best among the ARIMA models. 

 

ARCH family models  
 

The monthly price data of black pepper in 

Gonikoppal market for the period from 2008-

09 to 2017-18 were used to choose the ARCH 

family models for forecasting using EViews 

Software. 

 

The ADF test was used to test the stationarity 

(Table 1), it was found to be non-stationary 

for level series and stationary for first 

differenced series.  

 

Table.1 Augmented Dickey-Fuller test 

 

ADF Test Level Series First Differenced Series 

Statistic p-value# Statistic p-value# 

None -0.1725 0.6241 -10.4367 0.000 

Constant -1.4290 0.5696 -10.4448 0.000 

Constant and Trend -1.7739 0.7176 -10.4815 0.000 
# Mackinnon (1996) one sided p values 

 

Table.2 Tentatively identified ARIMA (p,d,q) models 

 

Tentative Models AIC SBIC 

011 2359.88 2368.22 

110 2365.08 2373.42 

111 2360.92 2372.04 

012 2360.65 2371.76 

210 2362.31 2373.42 

112 2362.63 2376.53 

211 2362.10 2375.99 

212 2362.24 2378.91 

 

Table.3 Estimates of ARIMA (0, 1, 1) model 

 

Parameter Co-efficient S.E. z-value p-value 

Constant 222.303 260.193 0.854
NS

 0.392 

MA (1) -0.407 0.089 -4.542* 0.000 

NS: Non-significant 

* Significant at 5% level of significance 
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Table.4 Ljung-Box ‘Q’ statistic for residuals of ARIMA (0, 1, 1) model 

 

Statistic DF p-value 

22.726
NS

 17 0.158 
NS: Non-significant 

 

Table.5 Heteroscedasticity LM Test for first differenced 

 

N* R
2
 Prob. Chi-Square (1) 

61.237* 0.000 
N – No. of observations 

* Significant at 5% level of significance 

 

Table.6 ARCH Family Models 

 

Models AIC SBIC 

ARCH(1) 22.39 22.47 

ARCH(2) 22.43 22.53 

GARCH(1,1) 22.37 22.46 

EGARCH(1,1) 22.10 22.21 

TARCH(1,1) 22.35 22.47 

AR(1) ARCH(1) 22.22 21.31 

AR(1) ARCH(2) 21.25 21.37 

AR(2) ARCH(1) 21.23 21.32 

AR(2) ARCH(2) 21.31 21.43 

AR(1) GARCH(1,1) 20.29 20.40 

AR(2) GARCH(1,1) 20.55 20.66 

AR(1) EGARCH(1,1) 18.72 18.86 

AR(2) EGARCH(1,1) 19.23 19.37 

AR(1) TARCH(1,1) 20.29 20.43 

AR(2) TARCH(1,1) 20.74 20.88 

 

Table.7 Estimates of AR(1)-EGARCH(1,1) Model 

 

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5) 

*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

Mean Equation 

Variable Coefficient Std. Error z-Statistic Prob. 

C 78191.28 30204.85 2.588699 0.0096 

AR(1) 0.997188 0.000955 1044.533 0.0000 

Variance Equation 

C(3) 0.678936 4.08E-07 1662771. 0.0000 

C(4) 0.201290 6.14E-07 -327658.2 0.0000 

C(5) 0.291574 0.034735 8.394208 0.0000 

C(6) 0.968785 0.000768 1261.012 0.0000 
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Table.8 Serial Correlation LM Test for Residuals of AR(1)-EGARCH(1,1) Model 

 

N* R
2
 Prob. Chi-Square (4) 

6.899
NS

 0.141 
N – No. of observations 

NS: Non-significant 
 

Table.9 Normality Test for Residuals of AR(1)-EGARCH(1,1) Model 

 

Jarque-Bera Statistic Prob. 

0.768
NS

 0.681 
NS: Non-significant 

 

Table.10 Forecast Evaluation Statistic’s 

 

Model fit statistic’s ARIMA (0, 1, 1) AR(1)-EGARCH(1,1) 

RMSE 4772.10 5070.00 

MAPE 8.84 8.88 

 

 

Fig.1&2 Time Series Plot & ACF and PACF Plots of Level Series 

 

  
 

Fig.3&4 ACF and PACF Plots of First Differenced Series & ACF And PACF Plots Of Residuals 

From Arima (0, 1, 1) Model 
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Fig.5&6 Histogram of Residuals From Arima (0, 1, 1) Model & Normality Q-Q Plot Of 

Residuals From Arima (0, 1, 1) Model 

 

  
 

Fig.7 Actual vs. Fitted using arima (0, 1, 1) model 

 

 
 

The ARIMA model has a basic assumption that 

the residuals remain constant over time. Thus, 

the Heteroscedasticity LM test was carried out 

to check the volatility or ARCH effect in the 

time-series. The results of the test are presented 

in Table 5, which reveals that, there is an 

ARCH effect in the time-series.  

 

If the time-series contains ARCH effect, then 

only we can run the ARCH family models like 

ARCH, GARCH, EGARCH and TGARCH 

models. The values of AIC and SBIC for 

various models are presented in Table 6. 

Among the various models, AR(1)-

EGARCH(1,1) model is selected as best model 

based on minimum AIC (18.72) and SBIC 

(18.86) values. For the selected AR(1)-

EGARCH(1,1) model, the parameters with 

standard error were estimated using MLE and 

presented in Table 7.  

 

Residual analysis was carried out to check the 

adequacy of the selected model. The Serial 

Correlation LM test results are presented in 

Table 8. The large value of p (p=0.141 > 0.05) 

w.r.t chi-square statistic reveals that, there is no 

serial correlation in the residuals. The 

Normality test results are presented in Table 9. 

The large value of p (p=0.681 > 0.05) w.r.t 

Jarque-Bera statistic indicates that, the residuals 

are normally distributed.  

 

Comparison of Models 

 

The accuracy of forecast for the ARIMA (0, 1, 

1) model and AR(1)-EGARCH(1,1) model was 

tested using test statistic like RMSE and MAPE 
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and presented in Table 10. Based on the lowest 

values of RMSE (4772.10) and MAPE (8.84), 

the model ARIMA (0, 1, 1) is found better than 

AR(1)-EGARCH(1,1) model for Gonikoppal 

market. The Fig. 7 indicates there were narrow 

variation between actual prices and predicted 

prices using ARIMA (0, 1, 1) model (Verma et. 

al. 2016) for forecasting of black pepper price 

in Gonikoppal market. Seyed Jafar Sangsefidi et 

al., (2015) also found that the estimation due to 

ARIMA method has less relative error than the 

estimation through the ARCH model and the 

ARIMA model outperformed than ARCH 

model.  

 

It is concluded that, due to the variety of 

influence factors and randomness of agricultural 

product price fluctuation, modeling the market 

price of agricultural produce can be challenging. 

In this analysis, it is tried to fit the best model to 

forecast black pepper price. Among the tested 

models the prediction accuracy of the ARIMA 

model is higher than ARCH model by attaining 

the stationarity in the time-series and also by 

diagnostic checking. The ARIMA models found 

better than ARCH models because the monthly 

price data of black pepper in Gonikoppal 

market consisting linearity and less volatility. 

Based on the findings from the study we can 

propose that ARIMA models are better than 

ARCH models in predictions of black pepper 

price. This model could be used to take a 

decision to a researchers, policymakers and 

producers to forecast the price of black pepper 

in Karnataka. 
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