Original Research Article

Genetic Variability Studies for WUE Related Traits in F2 Mapping Population of Castor (Ricinus communis L.)

Gouthami Palle 1*, Ramesh Thatikunta 1, S. Narender Reddy 1, CH. V. Durga Rani 2 and V. Gouri Shankar 3

1 Department of Crop Physiology, College of Agriculture, PJTSAU, Rajendranagar, Telangana, India
2 Department of Molecular Biology and Biotechnology, IBT, PJTSAU, Rajendranagar, Telangana, India
3 Department of Genetic & Plant Breeding, PJTSAU, Rajendranagar, Telangana, India

*Corresponding author

ABSTRACT

Introduction

Castor during its life cycle, suffers from biotic and abiotic stresses. Drought, a complex combination of stresses, involves both moisture stress and high temperature stress. Although some agronomic interventions to conserve soil moisture and enhance Water Use Efficiency (WUE) are available, identification of castor varieties tolerant to drought and efficient in water use offers the best long term and cost effective solutions. Drought tolerance in any crop depends on its intrinsic capabilities to maintain high WUE. Identification of reliable traits for screening castor genotypes for drought tolerance as well as availability of genotypic variability for these traits is the research priority.

WUE, a quantitative character governed by many genes with small effect has been coupled with high environmental effect.

Key words: Castor, Genetic variability, GCV, PCV, Heritability, GA

Article Info

Accepted: 12 August 2018
Available Online: 10 September 2018

International Journal of Current Microbiology and Applied Sciences
ISSN: 2319-7706 Volume 7 Number 09 (2018)
Journal homepage: http://www.ijcmas.com
Therefore traits related to WUE would be important traits for the breeder to enhance the WUE coupled with high yield. Hence, Specific Leaf Area (SLA) and Soil Plant Analysis development (SPAD) Chlorophyll Meter Reading (SCMR) have been used in the study. Further results from the previous study on SLA have shown the consistent and significant inverse correlation of WUE and yield. However SCMR shown the positive association with WUE and yield (Nageshwara Rao et al., 2001).

Other leaf-related traits such as size or shape can influence WUE by affecting the rate of transpiration per unit of surface (Pallardy, 2008). Besides, SLA could affect photosynthetic capacity by modifying photosynthesis-nitrogen relations (Reich et al., 1998).

Intrinsic WUE\textsubscript{i} (μmol CO\textsubscript{2} mol H\textsubscript{2}O-1) is defined as the ratio of net CO\textsubscript{2} assimilation rate to stomatal conductance to water vapor. According to its definition, WUE\textsubscript{i} can be considered the component of WUE submitted to plant regulation by means of stomatal control (Bacon et al., 2004).

A large number of these studies showed variation in WUE\textsubscript{i} at the provenance or population level (Aranda et al., 2010). The chlorophyll fluorescence is an important measurement of photosynthetic efficiency of crops. The high ratio of variable to maximum fluorescence (Fv/ Fm ratio) is proportional to quantum yield showing high degree of photosynthesis (Gitelson et al., 1998).

Significant genetic components for physiological traits were found for several species (Scotti et al., 2010), suggesting that genetic control over these traits could be important. However, selecting genotypes with high WUE is a useful strategy in breeding for high WUE (Condon et al., 2004).

Breeders very often use segregating populations as source population to exercise selection for identifying homozygous lines with better performance to develop varieties. At the same time, the breeding lines from the advanced generations are also used as parental lines for developing commercially exploitable heterotic hybrids. But, most often the source of early generations i.e., F3, F4, F5 and F6 segregating populations offer wider opportunities for achieving high success, because of wider genetic base (Mallikarjun and Savithramma, 2017).

Genetic variability is pre-requisite for improving any crop plant. In any crop improvement programme, germplasm serves as a valuable source of base population, which offers much scope for further improvement. The coefficient of variation expressed in phenotypic and genotypic levels are used to compare the variability observed among different characters. Hence, knowledge about the variability using parameters like genotypic co-efficient of variation (GCV) and phenotypic co-efficient of variation (PCV) is of paramount importance for an efficient breeding programme in crops like castor.

The primary aim of the breeder is to improve the available genotypes by evolving superior varieties. Evolving superior genotypes would be effective, only when the existing variability in the chosen material is wide. The observed variability for any character is the result of interaction of genotype with environment.

Hence, it becomes necessary to partition the overall phenotypic variability into heritable and non-heritable components of variability to have an effective selection for superior genotypes (Radhamani and Ushakumari, 2013). Thus the present investigation was taken up to know the heritability estimates that aid in determining the relative amount of heritable portion in variation for WUE traits.
Materials and Methods

400 castor F₂ mapping population derived from a cross between Palem Castor Selection (PCS)-345 and PCS-106 genotypes having contrasting characters for drought were studied. The material was grown at College Farm, Professor Jayashankar Telangana State Agricultural University, Rajendranagar during September-2015 to February-2016. The distance between two successive rows was 90 cm, while within a row was 60 cm. Observations were recorded for various physiological traits related to WUE i.e., leaf area, specific leaf area (SLA), relative water content (RWC), SPAD chlorophyll meter reading (SCMR), gas exchange measurements and chlorophyll fluorescence and seed yield and its component traits. Genotypic and phenotypic coefficient of variations was estimated based on the formula given by Burton (1952) and heritability and genetic advance were calculated according to Allard (1960).

Results and Discussion

Analysis of variance revealed highly significant differences for all the 16 characters indicating presence of high amount of variability within the F₂ population under study. The variability estimates such as PCV, GCV, heritability and genetic advances as per cent of mean have been presented (Table 1).

Among the F₂s, stomatal conductance and leaf area were distinct for its lowest mean values of 0.52 mole H₂O m⁻² sec⁻¹ and 4.16 cm² and highest mean values were observed for Intrinsic WUE (31.23 μmol CO₂ mol H₂O⁻¹), number of capsules/spike (42.98), Seed Yield/Plant (100.31g) and Total Dry Matter (227.01g) (Table 1).

In the present study phenotypic and genotypic coefficient of variations ranged from 0.516, 0.472% for SLA and 42.20, 40.57% for Extrinsic WUE. Maximum phenotypic and genotypic variances were observed for leaf area (34.89 to 34.74%), photosynthetic rate (21.75 to 20.62%), stomatal conductance (29.51 to 28.50%), transpiration rate (37.19 to 36.32%), extrinsic WUE (42.20 to 40.57%), number of spikes per plant (32.50 to 26.44%), number of capsules on primary raceme (34.69 to 31.57%), seed yield per plant (30.05 to 28.62%) and TDM (33.90 to 23.78%). While minimum variances were shown by SLA (0.516 to 0.472%) and SCMR (7.49 to 4.88%) (Table 1). Little difference between PCV and GCV for all the traits indicated that the least role played by environment on these characters (Radhamani and Ushakumari, 2013).

The amount of genotypic variance present for a trait in a population influences estimates of heritability. More divergent parents yield a population that is more genetically variable. A large phenotypic variance would provide the breeder with a wide range of variability from which selection could be practiced (Acquaah, 2012).

Prince (2013) observed high GCV and PCV for leaf area (29.4, 29.41%) whereas low GCV and PCV (12.62, 12.74%) for SLA was recorded. Syed Sab et al., (2018) observed low GCV and PCV for SCMR (8.21 and 9.91%). Same results were observed by Nandini et al., 2011 from their studies on heritability, observed moderate heritability, GCV, PCV and genetic advance for SCMR, and pod weight per plant. They also reported the traits that conferred water use efficiency, high SCMR and low SLA that showed moderate to high heritability and moderate to low Genetic Advance as per Mean.

They conferred that there was more scope for bringing improvement in SCMR through phenotypic selection than in SLA.
Savita *et al.*, (2014) reported low GCV and PCV (%) for relative water content (RWC). Venkatesan *et al.*, (2017) observed high GCV and PCV in stomatal conductance (50.73%, 76.33%) followed by transpiration rate (22.09%, 33.81%), whereas moderate GCV were observed in photosynthetic rate (15.38%, 15.57%). Dhavan (2015) recorded highest PCV and GCV for stomatal conductance (18.83% and 15.90%) and moderate PCV and GCV were recorded for photosynthetic rate (10.73% and 8.90%) and chlorophyll content (9.02% and 7.03%).

Dapke *et al.*, 2016 reported high GCV and PCV for number of capsules on primary raceme and seed yield per plant. Omkarappa *et al.*, (2010) reported high GCV for number of capsules in primary spike in castor. Rajesh *et al.*, (2010) reported high GCV for single plant yield. Patel *et al.*, (2010) recorded high GCV for the characters viz., number of capsules on primary spike and seed yield per plant. As yield and its attributes are highly influenced by the environment, it is difficult to conclude whether the observed variability is heritable or not. Therefore, it becomes essential to partition the observed variability into heritable and non-heritable components. GCV along with heritability estimates would be better effective for selection.

Heritability has been reported to be a good index of the transmission of characters from parents to offspring (Falconer, 1967). In the present investigation all the characters showed high heritability indicating low environmental effect and high capacity of the characters for the transmission to subsequent generation (Table 1).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean</th>
<th>Coefficient of variance</th>
<th>Broad sense heritability (H^2) (%)</th>
<th>Genetic Advance as % mean (GAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf area (cm$^{-2}$)</td>
<td>603.05</td>
<td>34.89</td>
<td>34.74</td>
<td>99</td>
</tr>
<tr>
<td>SLA (cm$^{-2}$ g$^{-1}$)</td>
<td>4.16</td>
<td>0.51</td>
<td>0.47</td>
<td>83</td>
</tr>
<tr>
<td>RWC (%)</td>
<td>78.26</td>
<td>10.63</td>
<td>9.55</td>
<td>81</td>
</tr>
<tr>
<td>SCMR</td>
<td>45.13</td>
<td>7.49</td>
<td>4.88</td>
<td>42</td>
</tr>
<tr>
<td>Pn (µ mole CO$_2$ m$^{-2}$ sec$^{-1}$)</td>
<td>24.44</td>
<td>21.75</td>
<td>20.62</td>
<td>90</td>
</tr>
<tr>
<td>gs (mole H$_2$O m$^{-2}$ sec$^{-2}$)</td>
<td>0.52</td>
<td>29.51</td>
<td>28.50</td>
<td>93</td>
</tr>
<tr>
<td>T (m mol H$_2$O m$^{-2}$ sec$^{-1}$)</td>
<td>6.84</td>
<td>37.19</td>
<td>36.32</td>
<td>95</td>
</tr>
<tr>
<td>Intrinsic WUE (Pn/gs)</td>
<td>31.23</td>
<td>20.84</td>
<td>18.35</td>
<td>78</td>
</tr>
<tr>
<td>Extrinsic WUE (Pn/T)</td>
<td>3.91</td>
<td>42.20</td>
<td>40.57</td>
<td>92</td>
</tr>
<tr>
<td>Chlorophyll fluorescence (Fv/Fm)</td>
<td>0.61</td>
<td>11.59</td>
<td>10.81</td>
<td>86</td>
</tr>
<tr>
<td>No. of spikes</td>
<td>7.52</td>
<td>32.50</td>
<td>26.44</td>
<td>66.2</td>
</tr>
<tr>
<td>Effective Spike Length (cm)</td>
<td>24.05</td>
<td>22.81</td>
<td>13.58</td>
<td>35</td>
</tr>
<tr>
<td>No of Capsules/Spike</td>
<td>42.98</td>
<td>34.69</td>
<td>31.57</td>
<td>83</td>
</tr>
<tr>
<td>100 Seed Weight (g)</td>
<td>28.71</td>
<td>23.76</td>
<td>10.08</td>
<td>18</td>
</tr>
<tr>
<td>Seed Yield/ Plant (g)</td>
<td>100.31</td>
<td>30.04</td>
<td>28.61</td>
<td>91</td>
</tr>
<tr>
<td>Total Dry Matter (TDM, g)</td>
<td>227.01</td>
<td>33.90</td>
<td>23.78</td>
<td>49</td>
</tr>
</tbody>
</table>

Heritability has been reported to be a good index of the transmission of characters from parents to offspring (Falconer, 1967). In the present investigation all the characters showed high heritability indicating low environmental effect and high capacity of the characters for the transmission to subsequent generation (Table 1).
Table 2: Comparative statement based on estimates of different genetic parameters for 16 characters in F2 generation of castor

<table>
<thead>
<tr>
<th>Trait</th>
<th>Genetic parameters</th>
<th>Gene effects</th>
<th>Influence of environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf area (cm²)</td>
<td>High h^2 and high GAM</td>
<td>additive</td>
<td>low</td>
</tr>
<tr>
<td>Pn (µ mole CO₂ m⁻² sec⁻¹)</td>
<td>High h^2 and low GAM</td>
<td>Non additive</td>
<td>low</td>
</tr>
<tr>
<td>gs (mole H₂O m⁻² sec⁻¹)</td>
<td>Moderate h^2 with high GAM</td>
<td>Additive</td>
<td>medium</td>
</tr>
<tr>
<td>T (m mol H₂O m⁻² sec⁻¹)</td>
<td>Moderate h^2 with moderate GAM</td>
<td>Additive and Non additive</td>
<td>medium</td>
</tr>
<tr>
<td>Intrinsic WUE (Pn/gs)</td>
<td>Moderate h^2 with low GAM</td>
<td>Non-additive</td>
<td>high</td>
</tr>
<tr>
<td>Extrinsic WUE (Pn/T)</td>
<td>Low h^2 with low GAM</td>
<td>Non additive</td>
<td>high</td>
</tr>
</tbody>
</table>

In general, SLA had lower G×E interactions than did pod yield, TDM and WUE because it is more complex trait (Araus et al., 2002).

Because of low G×E interactions, the use of surrogate trait as selection criteria might be useful for improving WUE if heritability is high. High heritability estimates for SLA has been reported (Upadhyaya, 2005). Therefore, it is promising as selecting criteria for WUE.

Heritability in broad sense was estimated for all the characters and it ranged from 18 % (100 seed weight) to as high as 99 % (leaf area). The range of genetic advance varied from 0.89 to 80.33% (Table 1).

High heritability coupled with high GAM was observed for leaf area (99%, 71.24%) followed by T (95%, 73.11%), gs (93%, 56.67%), extrinsic WUE (92%, 80.33%), seed yield per plant (91%, 56.14%), Pn (90%, 40.27%), chlorophyll fluorescence (86%, 20.54%), number of capsules on primary raceme (83%, 59.17%), intrinsic WUE (78%, 33.27%) and number of spikes per plant (66.2%, 44.34%) indicating their nature of least influenced by environment and are useful for breeding programme.

Prince (2013) reported high heritability coupled with high GAM for leaf area (99.94%, 60.54%). Venkateshan et al., (2017)
observed high heritability accompanied with high genetic advance in photosynthetic rate (67.60%, 31.30%) which indicated that the heritability was due to additive gene effects and selection might be effective. They also noticed moderate heritability with high genetic advance in stomatal conductance (50.54%, 76.19%) and transpiration rate (40.06%, 62.73%).

High heritability associated with moderate GAM was noticed in RWC (81%, 17.65%). Similar results for RWC (95%, 15.66%) were obtained by Savita et al., 2014. High heritability with low GAM was observed in SLA (83%, 0.89%) (Table 2). High heritability coupled with low genetic advance indicates the greater role of non-additive genetic variance like epistatic and dominant interaction factors controlling the inheritance of these traits (Syed Sab et al., 2018).

In our study moderate heritability with high GAM was recorded in TDM (49%, 34.37%). Moderate heritability with moderate GAM was observed in effective spike length (35%, 16.66%). Moderate heritability with low GAM was observed in SCMR (42%, 6.55%) (Table 2). Similarly Dhavan (2015) recorded medium heritability coupled with low genetic advance for chlorophyll content (60.9%, 11.3%).

Low heritability with low GAM was observed in 100 seed weight (8.81%, 18%) (Table 2). Similarly John et al., 2011 recorded low heritability and low GAM for 100-kernel weight indicating non-additive gene action in inheritance of the character. Hence, selection for the character is not effective in early segregating generations and has to be carried in later generations.

Goyat Binesh et al., (2012) observed high heritability coupled with high genetic advance for number of siliquae, number of seeds per siliqua and seed yield per plant. Similar results were noticed by Dapke et al., (2016) and Mallikarjun and Savithramma (2017) indicating the presence of additive gene action. Lira et al., (2017) also observed heritability greater than 90% for yield. High heritability estimates contributed to the success of the selection, since they indicated the possibility that such characteristics are inherited.

The evaluated characteristics for castor achieved significant genetic effects. The genetic variance was the main component of phenotypic variation among genotypes. The selection is favored for the characteristics evaluated, as indicated by the high values of genetic variation coefficient, heritability and selective accuracy.

Maximum phenotypic and genotypic variances were observed for leaf area, gas exchange measurements, extrinsic WUE, number of spikes, number of capsules per spike, seed yield per plant and TDM while minimum variances were shown by SLA, RWC, SCMR and Chlorophyll fluorescence.

High heritability coupled with high genetic advance were observed for the characters viz., leaf area, gas exchange measurements, intrinsic WUE, extrinsic WUE, chlorophyll fluorescence, number of spikes per plant, number of capsules on primary raceme, seed yield per plant indicating that these characters are governed by additive genes and simple phenotypic selection will be rewarding for improvement of these characters.

Acknowledgement

The authors acknowledge the fellowship support provided during the conduct of the present study by Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad.
References

Nandini, C., Savithramma D. L. and Naresh Babu, N., 2011, Genetic variability analysis for surrogate traits of water use efficiency in F8 recombinant inbred

How to cite this article: