Methane Emission by Ruminants and Its Measurement - A Review

Mokshata Gupta1*, Tanmay Mondal2, E. Lokesh3, Asmita Singh4, K. Ashwin5, Shahla Perween6 and Jatin Kumar Sahoo7

1Division of Animal Nutrition, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly (U.P.) – 243122, India
2Division of Physiology & Climatology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly (U.P.) – 243122, India
*Corresponding author

Abstract

Ruminants accounts for up to one-third of the emitted methane worldwide. Over the decade, various methods have been developed with the purpose of measuring and estimating methane emissions from ruminants. These methods have advantages and disadvantages - none of them is perfect: Some are expensive, some cheaper; some suitable for grazing animals, some for housed ruminants; some can handle many animals, some only few. This all will ultimately affect our results and their interpretation. It is therefore, important to know the potential and limitations of each method. In this review, commonly used methods for measuring methane emission have been discussed along with their pros and cons. In addition, this review compares different estimation approaches that are commonly used.

Keywords

Methane, Ruminants, Estimation

Introduction

Livestock and especially ruminants accounts for up to one-third of the emitted methane worldwide (IPCC, 2007). Methane (CH4) from agriculture arises primarily from enteric fermentation. Therefore, ruminants are responsible for enteric emissions of CH4 during the normal digestive process. Among ruminants, cattle are the major contributor to greenhouse effect through CH4 emission followed by sheep and goats (Charmley et al., 2008). Fermentation CH4 is the sum of enteric CH4 and manure CH4 (Mihina et al., 2012). Enteric fermentation is a large source of methane, which has a global warming potential 28 times as strong as that of CO2 on a 100-year time horizon (Stocker et al., 2013). It has been proven to be the second most anthropogenic greenhouse gas (Turner et al., 2016) that accounts for a significant energy loss to the ruminants i.e. about 2-15% of feed energy (Hess et al., 2004). It accounts for 17-37% of anthropogenic CH4 (Sejian et al., 2011) from ruminants and its emission depends on several factors like animal species,
breed, rumen pH, acetate: propionate, dietary composition, etc.

The CH$_4$ emissions from the ruminants is measured as part of the studies related to ruminal fermentation, energy balance, evaluation of feed additives and most recently, to characterize and reduce the contribution of ruminants to the global CH$_4$ production. Methodologies for measuring CH$_4$ emissions range from animal respiration chambers to estimation by model techniques. However, several factors need to be considered in order to select the most appropriate technique like the cost, level of accuracy required and the scale and design of the experiments to be undertaken (Johnson et al., 2000). The commonly used methods for measuring methane emission in ruminants have been discussed in this paper along with their pros and cons. In addition, comparison between them has been done (Table 1).

Respiration calorimeter

It is the classical standard for measuring ruminant CH$_4$ production. Respiration calorimetry techniques such as whole animal chambers, head boxes, or ventilated hoods and face masks have been effectively used to measure CH$_4$ emissions in ruminants. There are different designs of calorimeters (Blaxter, 1962), but the most common is “open circuit calorimeter”. The basic principle behind “open-circuit indirect-respiration technique” is that outside air is circulated around the animal’s head, mouth and nose and well-mixed inside air is collected (Mclean and Tobin, 1987) (Fig. 1). The animal is placed inside open-circuit respiration chamber for a period of several days, the inputs (feed, oxygen, CO$_2$) and outputs (excretion, oxygen, CO$_2$ and CH$_4$) are measured from the chamber. The chamber should be tightly sealed with a slight negative pressure inside. This ensures no net loss of CH$_4$ from the chamber. Internal ventilation fans efficiently mix the expired air and incoming air. An air pump removes all air from the space through flow meter and gas sensor analysis is done. Difference between outgoing and incoming amount of methane is methane emission. Its pros and cons have been mentioned in Table 2.

Sulphur hexafluoride (SF$_6$) Tracer Technique

This method is relatively new and was first described in 1993–1994. This method is primarily used to investigate energy efficacy in free ranging cattle (Okelly et al., 1992). The basic principle is that CH$_4$ emission can be measured if the emission rate of a tracer gas from the rumen is known. For this purpose a non-toxic, physiologically inert (Johnson et al., 1992), stable gas is needed. Additionally, the gas should mix with rumen air in the same way as methane. Therefore, SF$_6$ was chosen because it fulfills all the above criteria, is cheap, has an extremely low detection limit and is simple to analyze.

For individual animal measurement, a calibrated source of SF$_6$ is placed in the rumen before conducting an experiment. The source of SF$_6$ is a permeation tube, and the rate of release of SF$_6$ is controlled by a permeable Teflon membrane held in place by a porous stainless steel frit and a locking nut. The release rate of the gas permeation tube is calibrated at 39°C by regular weighing for a period, prior to its insertion into the rumen. Each test animal is fitted with a halter, which supports an inlet tube that is placed so that its opening is close to the nose (depicted in Fig. 2). As the vacuum in the sampling canister slowly dissipates, a steady sample of the air around the mouth and nose of the animal is taken. By varying the length and diameter of the capillary tube the duration of sampling may be regulated. The volumes of the canister
is about 1.7 and 2.5 litres for sheep and cattle respectively, and the capillary system is designed to deliver half this volume during the collection period of 24 h. An identical apparatus needs to be placed each day to collect an integrated background air sample. After collection of a sample, the canister is pressurized with nitrogen, and CH$_4$ and SF$_6$ concentrations are determined by gas chromatography. Methane emission rate is calculated as:

$$Q_{CH_4} = Q_{SF_6} \times [CH_4]/[SF_6]$$

Where Q_{CH_4} is the emission rate of methane in g/day; Q_{SF_6} is the known release rate (g/day) of SF$_6$ from the permeation tube; [CH$_4$] and [SF$_6$] are the measured concentrations in the canister.

Rumen Simulation Technique (RUSITEC)

In the RUSITEC, solid feeds are confined in nylon bags that are normally replaced by new bags once a day. The amount of ration is small (10-25 g DM/day/L of vessel), and the set points of the liquid dilution rate are also small (25%/h) as compared with the actual in vivo values (Bhatta et al., 2007b). Its pros and cons have been mentioned in Table 2.

The gas produced from each fermenter is collected in polythene/rubber bags and the volume of gas is recorded using a dry gas meter. From the gas samples, the concentration of CH$_4$ is measured in gas chromatograph. The volume of CH$_4$ gas produced is calculated from the total volume of gas produced after 24 h in the fermenter. The CH$_4$ production should be converted to STP value (1 atm, 0°C) for comparison with CH$_4$ measured by other techniques.

Methane in ml (at STP) = (Methane ml) × (273/ (273+25)) × ((atmospheric pressure at the experiment) / (standard atmospheric pressure))

In Vitro Gas Production Technique (IVGPT)

Menke et al., (1979) developed a feed evaluation system using an in vitro gas measuring technique. The amount of gas produced during the incubation of feedstuffs with rumen liquor in 100 ml calibrated syringes is closely related to digestibility and therefore to the energetic feed value of feedstuffs for ruminants.

Therefore, on the basis of gas production, quality of feeds can be evaluated. The concentration of CH$_4$ (%) in the gas samples was determined by the gas chromatograph. Its pros and cons have been mentioned in Table 2.

Methane models

During scientific trials using the total national emissions, calculation is not possible. Therefore, methane models have been developed to predict methane production based on existing data, such as animal characteristics (weight, age, and breed), feed characteristics (nutrient and energy content), intake data (dry matter or nutrients) or digested nutrients.

These models frequently uses data derived from experiments conducted with cattle in respiration chambers. The standard model usually used for calculating cattle methane emissions is issued by the IPCC. IPCC (2006) recommends the tier-2 method for estimating CH$_4$ emissions from enteric fermentation for those countries with large cattle populations. Average daily feed intake (in terms of GE content, MJ/d) and CH$_4$ conversion rates (Ym) are used to estimate CH$_4$ emissions in the tier-2 method. For dairy cattle, Ym is 6.5% ± 1% of GE intake and for intensively fed cattle (>90% concentrate), Ym is 3% of GE.
Table 1: Comparison between common methane emission techniques

<table>
<thead>
<tr>
<th>Method parameter</th>
<th>Respiration Calorimetry</th>
<th>SF₆ technique</th>
<th>IVGPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitability for Individual animals</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Variation within animals</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Variation between animals</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Animal fixation</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Effect of physical form of diet</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Animals to carry equipment</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 2: Pros and cons of methane measuring techniques in ruminants

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pros</th>
<th>Cons</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration Calorimeter</td>
<td>Accurate measurement of CH₄ from ruminal and hindgut fermentations</td>
<td>Not suitable for grazing ruminants, restriction of animal movement, construction and maintenance of the chambers is costly</td>
<td>Bhatta et al., (2007a)</td>
</tr>
<tr>
<td>Ventilated Hood</td>
<td>Lower cost</td>
<td>Requires restrained and trained animal, hindgut CH₄ can’t be measured</td>
<td>Bhatta et al., (2007a)</td>
</tr>
<tr>
<td>Facemasks</td>
<td>Simplicity and lower cost, suitable for grazing animals</td>
<td>Underestimates heat production, requires animal cooperation and eliminates their ability to eat and drink</td>
<td>Liang et al., (1989)</td>
</tr>
<tr>
<td>Sulphur Hexafluoride (SF₆) Tracer Technique</td>
<td>Allow the animal to move and graze freely, suitable for individual free ranging animals on pasture</td>
<td>Itself it is a GHG with a GWP 23,900 times that of CO₂, presence of residue of SF₆ in meat and milk from farm animals, It is necessary to train the animal to wear a halter and collection canister, less precise, equipment failure</td>
<td>Machmuller and Hegarty (2005)</td>
</tr>
<tr>
<td>Rumen Simulation Technique (RUSITEC)</td>
<td>Constructional simplicity and operational easiness, More number of fermenters can be used at a time</td>
<td>Difficulty in obtaining a uniform sample, Protozoa numbers in the effluent gradually decreases as the incubation proceeds and settles at around 3,000/ml after the 8th day for 3.0 %/h dilution rate</td>
<td>Bhatta et al., (2006, 2007a)</td>
</tr>
<tr>
<td>In Vitro Gas Production Technique</td>
<td>Possible to screen many different feedstuffs fast and cheaply, easy to control fermentation conditions like pH, animal to animal variation- avoided</td>
<td>It only simulates ruminal fermentation of feed, not emissions and digestibility by the entire animal</td>
<td>Czerkawski and Breckenridge (1977)</td>
</tr>
</tbody>
</table>
There are 2 types of models:

1) **Empirical (statistical) model**: Relates nutrient intake to CH$_4$ output directly.

Moe and Tyrrell model (2006): It is an empirical model. It uses data from cattle and relates intake of carbohydrate fractions to CH$_4$ production

Methane (MJ/d) = 3.41 + 0.51 NFC + 1.74 HC + 2.65 C

where, NFC= non-fibre carbohydrate (kg/d); HC= Hemicellulose (kg/d); and C= cellulose (kg/d).

Dynamic mechanistic model: Attempts to simulate methane emission based on mathematical description of ruminal fermentation biochemistry.

MOLLY Model: It is dynamic mechanistic model of nutrient utilization in cattle. Ruminal CH$_4$ production was predicted to be based on hydrogen balance.

Advantages of mechanistic model

They are diet-specific, average values are used to emphasize the magnitude of differences in CH$_4$ emissions when using apparently similar Ym values to estimate national inventory.
Mitigation options implemented at a farm or national level can be assessed for their effectiveness (empirical models- only reductions in emissions can be assessed).

In conclusion, many good methods for measuring CH$_4$ emissions from ruminants are already in use and new ones are being developed. All these methods require careful consideration before application. In this context, a thorough knowledge of the pros and cons of experimental methods is extremely important. The choice of a method depends on the accuracy. Increased understanding and improved quantification of CH$_4$ production has implications not only for global environmental protection but also for efficient animal production.

References

How to cite this article:

3126