

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 06 (2018)

Journal homepage: http://www.ijcmas.com

Original Research Article

https://doi.org/10.20546/ijcmas.2018.706.181

Studies on Effect of Pre Harvest Treatments for Extending the Post-Harvest Life of Mango cv. Kesar

R. Rajya Lakshmi* and Sravanthi Guntupalli

Mango Research Station, Dr. Y. S. R. Horticultural University, Nuzvid - 521201, Krishna District, (A.P.), India

*Corresponding author

ABSTRACT

Keywords

Mango, boron, calcium chloride, calcium nitrate, potassium sulphate, shelf life, quality, Days after harvest (DAH)

Article Info

Accepted: 17 May 2018 Available Online: 10 June 2018 Mango (Mangifera indica L.) is one of the most luscious fruit of world, which occupies a prime position in the international fruit processing industry of the world. It is one of the most choicest and popular fruit among the people and designated as the 'king of fruits' (Sawke et al., 15). 7 years old mango cv. Kesar garden planted at a spacing of 7.5 m x 7.5 m was selected for the experiment. Spraying was carried out once with Taiwan sprayer at 30 days before harvest of fruits. Initial fruit weight (g), fruit weight at 5, 10 and 15 days after harvest (DAH) was found to be non-significant among various treatments. Physiological loss of weight was significantly low in 2% K₂SO₄ at 5 (3.97%), 10 (11.11%) and 15 (16.15%) DAH. 4% CaCl₂.6H₂O spray recorded lowest anthracnose infestation of 9.87% at 10 DAH, 2% CaCl₂.6H₂O and 2% K₂SO₄ sprays recorded lowest anthracnose infestation of 10.08% at 15 DAH and 2% CaCl₂.6H₂O recorded lowest anthracnose infestation of 10.23% at 20 DAH. In terms of qualitative characters, significantly highest total soluble sugars (°B) of 21.27, total sugars percentage of 15.32, reducing sugars percentage of 3.96 and non-reducing sugars percentage of 11.36 was recorded in 2% K₂SO₄ spray. Significantly low titrable acidity percentage of 0.25% and significantly high ascorbic acid content of 35.55 mg/100 g was recorded in 2% K₂SO₄ spray.

Introduction

The mango (Mangifera indica L) is a juicy fruit belonging the to family Anacardiaceae and is an important fruit crop of India, as well as tropical and sub-tropical countries of the world. Mango is a national fruit of India. Besides, its excellent flavour, delicious taste, delicate fragrance attractive colour, it is known as 'King of fruits'. It is considered to be a good source of **B-Carotene** and vitamin-A, vitamin-B complex, vitamin-C, nutritive minerals.

digestible sugars and trace elements (Mane et al., 2016). Post-harvest losses vary from 17 to 36 per cent in mango. These losses occur at the farm level (harvesting), grading, transport, storage and marketing (Krishnamurthy and Rao, 2001). The rapid changes that occur after harvest soften the fruit which gives away easy pathogens causing diseases for especially anthracnose resulting in heavy postharvest losses which accounts for 37-75 % of production. Appropriate chemical treatments reduce the post-harvest losses to some extent. Mango cv. Kesar is famous for

its excellent quality and pleasant flavour. It is one of the leading commercial mango cultivar of India. It is usually preferred for indigenous market but now a days getting place in export market also. It is high yielder, regular bearer, having good consumer acceptance because of its attractive shape, size, colour of pulp and good keeping quality (Mane *et al.*, 2016). So the present study was taken up to study the effect of certain pre harvest treatments on extending the post-harvest life of mango cv. Kesar under Nuzvid conditions.

Materials and Methods

The present experiment was conducted at Mango Research Station, Nuzvid, Andhra Pradesh for three years on a commercial mango cv Kesar. The selected trees were uniform in size and of 7 years age.

The experiment involved pre-harvest spray of different chemicals which includes i.e., 2% CaCl₂.6H₂O, 4% CaCl₂.6H₂O, 2% Ca (NO₃)₂. 4% Ca (NO₃)₂, 1% K₂SO₄, 2% K₂SO₄, 2% Borax and 3% Borax which were applied as foliar spray. Spraying was carried out once with Taiwan sprayer at 30 days before harvest of fruits. Recommended package of practices schedule for mango has been followed. Data to be collected include initial fruit weight (g), weight (g) of fruit at 5 DAH, weight of fruit (g) at 10 DAH, weight of fruit (g) at 15 DAH, physiological loss of weight (%) (5, 10, 15 DAH), anthracnose infestation (%) 10, 15 and 20 DAH, TSS (^oBrix), titrable acidity (%), total sugars (%), reducing sugars (%), nonreducing sugars (%) and ascorbic acid (mg/100g). Pooled statistical analysis was carried out using ANOVA.

Results and Discussion

Pooled data analysis from table 1 shows that maximum initial fruit weight was 227.78g in 3% borax spray treatment and minimum initial

fruit weight of 209.54g was recorded in 2% Ca(NO₃)₂ treatment and the result was in coincidence with the findings of Dutta (2004) who identified appreciable improvement in fruit weight by borax application in mango cv. Himsagar. The increase in fruit weight with the sprays of borax was might be due to the involvement in hormonal metabolism. increased cell division and expansion of cell. Boron is also known to stimulate rapid mobilization of water and sugar in the fruit (Chauhan et al., 2014). Boron facilitated sugar transport within the plant and it was also reported that borate react with sugar to form a sugar-borate complex (Gauch and Dugger, 1953).

Maximum initial fruit weight at 5 DAH was 216.38g in 2% K₂SO₄ treatment and minimum initial fruit weight of 185.98g was recorded in control. Maximum initial fruit weight at 10 DAH was 200.35g in 2% K₂SO₄ treatment and minimum initial fruit weight of 172.69g was recorded in control. Maximum initial fruit weight at 15 DAH was 188.75g in 2% K₂SO₄ treatment and minimum initial fruit weight of 161.96g was recorded in control similarly Jakhar and Pathak (2014) observed that the spray of 2% CaCl₂ and 1% K₂SO₄ combined with bagging was found superior to increase the quality of fruits in respect of fruit weight, TSS, ascorbic acid, sugars, β-carotene content and TSS: acid ratio and decrease the total acidity with minimum black spotted fruits per cent and highest organoleptic quality among all treatments in both the seasons.

Minimum physiological loss of weight (PLW %) percentage of 3.97, 11.11 and 16.15 was recorded in 2% K₂SO₄ treatment at 5, 10 and 15 DAH similarly Dutta *et al.*, 2011 observed that mango trees receiving foliar spray of K₂SO₄ (1% concentration) had a significant reduction in PLW and recorded a maximum (8 days) shelf life at ambient room temperature as compared to the other treatments.

Table.1 Effect of pre harvest treatments for extending the post-harvest life of mango cv. Kesar 2012-15

Treatment	Initial Fruit Wt (g)	Fruit Wt 5 DAH (g)	Fruit Wt 10 DAH (g)	Fruit Wt 15 DAH (g)	PLW (%) 5 DAH	PLW (%) 10 DAH	PLW (%) 15 DAH	Anthracnose Infestation (%) 10 DAH	Anthracnose Infestation (%) 15 DAH	Anthracnose Infestation (%) 20 DAH
2% CaCl ₂ .6H ₂ O	214.87	201.83	188.91	174.28	6.05	12.07	18.90	9.99	10.08	10.23
4% CaCl ₂ .6H ₂ O	220.53	207.66	195.13	180.44	5.90	11.61	18.28	9.87	10.15	10.34
2% Ca(NO ₃) ₂	209.54	189.72	176.57	164.72	9.49	15.68	21.42	10.29	10.68	10.80
4% Ca(NO ₃) ₂	215.03	192.60	178.94	164.52	10.48	16.87	23.45	10.28	10.44	10.56
1% K ₂ SO ₄	217.21	207.36	192.71	181.58	4.58	11.36	16.34	10.12	10.39	10.53
2% K ₂ SO ₄	225.32	216.38	200.35	188.75	3.97	11.11	16.15	9.94	10.08	10.32
2% Borax	221.94	204.23	191.27	178.17	7.99	13.83	19.76	10.46	10.60	10.93
3% Borax	227.78	207.54	184.40	183.23	8.95	14.70	20.54	10.79	10.86	11.05
Control	216.89	185.98	172.69	161.96	14.45	20.61	25.53	11.07	11.25	11.41
SEM ±	3.52	3.87	3.55	11.35	0.15	0.09	0.13	0.06	0.04	0.05
CD	NS	NS	NS	NS	0.44	0.26	0.39	0.17	0.13	0.14
CV (%)	4.83	5.77	5.70	20.20	5.50	1.81	1.94	1.63	1.28	1.27

Table.2 Effect of pre harvest treatments for extending the post-harvest life of mango cv. Kesar 2012-15

Treatment	TSS (°B)	Total Sugars (%)	Reducing Sugars (%)	Non Reducing Sugars (%)	Titrable Acidity (%)	Ascorbic Acid (mg / 100 g)
2% CaCl ₂ .6H ₂ O	19.50	13.47	3.11	10.36	0.29	27.22
4% CaCl ₂ .6H ₂ O	20.35	13.74	3.45	10.29	0.26	24.89
2% Ca(NO ₃) ₂	19.13	12.73	2.55	10.17	0.36	22.22
4% Ca(NO ₃) ₂	18.13	13.60	3.26	10.34	0.35	23.89
1% K ₂ SO ₄	20.52	14.81	3.75	11.05	0.26	33.33
2% K ₂ SO ₄	21.27	15.32	3.96	11.36	0.25	35.55
2% Borax	19.73	13.49	3.12	10.37	0.29	28.33
3% Borax	18.93	12.40	2.41	9.98	0.38	23.33
Control	18.49	11.08	2.16	8.91	0.42	20.55
SEm ±	0.10	0.10	0.03	0.10	0.00	1.25
CD	0.29	0.31	0.08	0.29	0.01	3.76
CV (%)	1.47	2.31	2.71	2.82	3.77	14.14

This might be due to the fact that K₂SO₄ contains considerably more SO₄-S than the other sources. This study suggests the added advantage of using K₂SO₄ as a source of K to improve fruit quality and shelf life of mango. Maximum PLW percentage of 14.45, 20.61 and 25.53 was recorded in control at 5, 10, 15 DAH respectively and similar findings were recorded by Jakhar and Pathak (2016) in mango cv. Amrapali pre-harvest treatment of 2% CaCl₂+1% K₂SO₄+bagging was found superior to improve the quality of fruits in respect of highest fruits weight, firmness, TSS, ascorbic acid, total sugars, and β carotene content with minimum black spotted fruits per cent and maintained it throughout the storage period upto 18 days. Fruits treated with 2% CaCl₂+1% K₂SO₄+bagging showed shelf life up to 12 days with lowest weight loss and highest organoleptic quality as against 6 days of untreated fruits (control).

At 10 DAH minimum anthracnose infestation percentage of 9.87 was recorded in 4% CaCl₂.6H₂O treatment and maximum anthracnose infestation percentage of 11.07 was recorded in control. At 15 DAH minimum anthracnose infestation percentage of 10.08 was recorded in 2% CaCl₂.6H₂O and K₂SO₄ treatments and maximum anthracnose infestation percentage of 11.25 was recorded in control. At 20 DAH minimum anthracnose infestation percentage of 10.23 was recorded in 2% CaCl₂.6H₂O maximum treatment and anthracnose infestation percentage of 11.41 was recorded in control. The result was in correlation with Singh et al., 1993 who observed that dip in 4-6% CaCl₂ can increase the shelf life of some cultivars as CaCl2 treatment results in low ethylene production, low respiration and reduced storage decay.

Pooled data analysis from table 2 shows that maximum TSS (°B) of 21.27 was recorded in 2% K₂SO₄ treatment and minimum TSS (°B)

of 18.13 was recorded in 4% Ca(NO₃)₂ treatment. Maximum total sugars (%) of 15.32 was recorded in 2% K₂SO₄ treatment and minimum total sugars (%) of 11.08 was recorded in control. Maximum reducing sugars (%) of 3.96 was recorded in 2% K₂SO₄ treatment and minimum reducing sugars (%) of 2.16 was recorded in control. Maximum non reducing sugars (%) of 11.36 was recorded in 2% K₂SO₄ treatment and minimum non reducing sugars (%) of 8.91 was recorded in control. Minimum titrable acidity (%) of 0.25 was recorded in 2% K₂SO₄ treatment and maximum titrable acidity (%) of 0.42 was recorded in control. Maximum ascorbic acid (mg/100 g) of 35.55 was recorded in 2% K₂SO₄ treatment and minimum ascorbic acid (mg/100 g) of 20.55 was recorded in control. Storage methods and post-harvest treatments to mangoes affect colour, ripening level, TSS, acidity and reduce the decay level and increase the shelf life, which in turn affect the market acceptability (Jha et al., 2010).

of qualitative characters, In terms significantly highest total soluble sugars (°B) of 21.27, total sugars percentage of 15.32, reducing sugars percentage of 3.96 and nonreducing sugars percentage of 11.36 was recorded in 2% K₂SO₄ spray the result was similar to the findings of dutta et al., 2011 who observed that the application of K₂SO₄ significantly increased the total soluble solids. total sugar and β-carotene content of fruits over KCl and KNO3 treated trees. Higher fruit quality, especially higher sugar content can be explained by the role of K in carbohydrate synthesis, breakdown and translocation and synthesis of protein and neutralization of physiologically important organic acids.

Marcio A. Carneiro *et al.*, 2017 observed higher efficiency with respect to the production per plant and yield of mango, in comparison to the fertilization with potassium

chloride, and the dose of 174.24 g per plant of potassium sulfate is recommended for a fruit yield of 23.1 t/ha under the studied conditions with fertilization of potassium sulfate. Significantly low titrable acidity percentage of 0.25% and significantly high ascorbic acid content of 35.55 mg/100 g was recorded in 2% K₂SO₄ spray the result is in coincidence with barbade and kulkarni (2012) who reported significantly maximum TSS (12.91 ^oB), total sugars (11.54 %) and minimum acidity (0.44 %) was recorded in T4 (Mulching + K₂SO₄ 1 %) at harvest. Similarly at edible maturity also significant maximum TSS (19.54 °B), total sugars (16.52 %) and minimum acidity (0.20 %) was recorded in T4 (Mulching + K₂SO₄ 1 %) in mango cv. Kesar. Similar study by Thirupathi and Ghosh (2015) concluded that Bassein Seedless had highest fruit yield and Ruby had good quality fruits of Pomegranate (Punica granatum L.) by foliar application of water soluble fertilizers KNO₃ and K₂SO₄ among seven cultivars grown in laterite soils of West Bengal. In general, all the 7-cultivars responded well in respect to fruit yield, fruit size and taste (TSS/acid ratio), to foliar feeding of nutrients as compared to un-sprayed (control).

References

- Barbade Shashikant S and Kulkarni 2012. Studies on effect of pre harvest spray for extending shelf life of mango *cv*. Keshar. M.Sc Ag. thesis submitted to the Mahatma Phule Krishi Vidyapeeth, Rahuri.
- Chauhan, P., Singh, J.P., Indu arora and Singh R.K. 2014. Flowering, fruiting, yield and physical character of fruit of mango cv. Dashehari as influenced by preharvest foliar spray of nutrients and plant bio-regulators. *Asian J Hort.*, 9(2): 459-462.
- Dutta, P. (2004). Effect of foliar application on panicle growth, fruit retention and

- physicochemical characters of mango cv. Himsagar. *Indian J. Hort.*, 61 (30): 265-266.
- Dutta, P., Ahmed, B. and Kundu, S. 2011. Better Crops -South Asia, 5(1): 16-18.
- Gauch, H.G. and Dugger, W.M. J. (1953). The role of boron in the translocation of sucrose. *Pl. Physiol.*, 28: 457-466.
- Jakhar and Pathak 2014. Enhancing quality of mango (*Mangifera indica* L.) fruits *cv*. Amrapali with pre-harvest foliar spray and fruit bagging. *Annals of Agri Bio Research* 19(3): 488-491.
- Jakhar and Pathak 2016. Effect of Pre-harvest nutrients application and bagging on quality and shelf life of mango (*Mangifera indica* L.) Fruits *cv*. Amrapali. *J. Agr. Sci. Tech.* 18: 717-729.
- Jha S. N. Narsaiah K. Sharma A. D. Singh M. Bansal S. Kumar R. 2010. Quality parameters of mango and potential of non-destructive techniques for their measurement a review. *J Food Sci Technol.*, 47(1): 1–14.
- Krishnamurthy, S. and Rao, D.V.S. (2001). Status of post-harvest management of fruits. *Indian J. Hort.*, 58 (1-2): 152.
- Mane, Shailendra R., Jadhav, Y.T. and Barkade, D.P. (2016). Effect of maturity indices, post-harvest treatments and storage temperature on shelf-life of mango *cv*. Kesar. *Asian J. Hort.*, 11(1): 202-207.
- Marcio A. Carneiro, Augusto M. N. Lima, Italo H. L. Cavalcante, Jailson C. Cunha, Marcos S. Rodrigues & Thiago B. da S. Lessa. 2017. Soil salinity and yield of mango fertigated with potassium sources. *R. Bras. Eng. Agric. Ambiental*, 21(5):310-316.
- Singh BP, Tandon DK, Kalra SK (1993). Changes in postharvest quality of mangoes affected by pre harvest application of calcium salts. *Scientia Hort.*, 54: 211-219.

Thirupathi N and Ghosh S.N. 2015. Effect of Foliar Feeding of KNO₃ and K₂SO₄ on Yield and Quality of Some Pomegranate Cultivars Grown in

Laterite Soils of West Bengal. International Journal of Tropical Agriculture. 33(4): 2835-2839.

How to cite this article:

Rajya Lakshmi R. and Sravanthi Guntupalli. 2018. Studies on Effect of Pre Harvest Treatments for Extending the Post-Harvest Life of Mango cv. Kesar. *Int.J.Curr.Microbiol.App.Sci.* 7(06): 1527-1533. doi: https://doi.org/10.20546/ijcmas.2018.706.181