Myroides spp. have historically been rare opportunistic pathogens although present widely in nature. Their notorious resistance to most classes of antibacterials and invasive potential leading to serious infections among the immunocompromised population calls for appropriate testing and management of the infections caused by Myroides spp.

Keywords: Myroides, Urinary tract infection, Immunocompromised, Multidrug resistant

Accepted: 10 March 2018
Available Online: 10 April 2018

A B S T R A C T

Myroides spp. have historically been rare opportunistic pathogens although present widely in nature. Their notorious resistance to most classes of antibacterials and invasive potential leading to serious infections among the immunocompromised population calls for appropriate testing and management of the infections caused by Myroides spp.

Case Study

A 12 year old girl presented to the paediatric OPD with complains of generalised swelling and decreased urine output for the past ten days. The swelling started from the face followed by the abdomen and limbs. The patient also had cough, difficulty in breathing and episodes of vomiting for the past 2 days. The vomiting was non-bilious and non-projectile. There was no history of fever, pain abdomen, loose stools, burning micturition or haematuria. There was no history of headache, or any evidence of focal neurological defect. On examination her blood pressure was found to be raised. Her cardiovascular and motor system functions were found to be within normal limits. On per abdomen examination, abdomen was found to be soft and distended, no organomegaly found and bowel sounds were normal. Her haemogram was within normal limits, ANA was negative. Chest X-ray showed signs of pleural effusion and pleural fluid was negative for TB by Genexpert. Her C3 and C4 complement levels were within normal limits. On urine analysis showed protein to creatinine ratio of 2.57. Urine dipstick showed- albumin (3+) and sugar (nil). Serum protein was 3.5-4 g/dl (normal: 6-8.3 g/dl) and serum albumin 1.3-1.5 g/dl (3.5-5 g/dl). Her total blood cholesterol was 912 mg/dl (normal <200 mg/dl). The patient had hypoalbuminemia, hyperalbuminuria, hyperlipidemia and generalised edema, thus a presumptive diagnosis of nephrotic syndrome was made.
She was started on tab. Furosemide, tab. Wysolone, tab. Lasix and inj. Ceftriaxone. On day 6 of her admission, she received albumin infusion. The patient was kept on a high protein diet. The patient was stable and responding to the treatment. However on day 22 of her admission, the patient had a seizure and was shifted to the ICU. The patient was started on tab. Phenytoin. The patient continued to have decreased urine output and she started to develop edema again. Over the next 24 hours patient also developed fever. Urine routine and microscopy was done. It again showed hyper albuminuria, also this time patient had pyuria (5-10 pus cells/hpf) and microscopy revealed presence of bacilli. Urine sample was sent for culture.

Culture revealed non-lactose fermenting, smooth, non-mucoid colonies measuring 2-3 mm on CLED agar and blood agar incubated under aerobic conditions showed round, convex, smooth, yellowish colonies measuring 1-2 mm. Gram stain showed gram negative bacilli. The organism was non-motile, indole negative, oxidase and catalase positive. The organism was identified as Myroides spp. By VITEK 2 system with an identification score of 96%. Unfortunately species level identification could not be done.

The antimicrobial testing was done using Muller Hinton agar by Kirby-Bauer disc diffusion method using CLSI guidelines 2016. Zone diameters for Pseudomonas were used as no standards are available for Myroides spp. The isolate was found to be resistant to all antimicrobials (Table 1). The MIC was obtained by VITEK 2 system and the organism was resistant to all antibiotics except Minocycline and intermediate susceptibility was seen for Tigecycline (Table 2).

The patient was started on inj. minocycline. On day 3 of starting minocycline her urine output started increasing. Further management of nephrotic syndrome continued with steroids and high protein diet.

Results and Discussion

Members of the genus Myroides were first isolated by Stutzer in 1923 and classified them as Bacterium faecale aromaticum. Later, in 1929 Stutzer and Kwaschnina, renamed it as Flavobacterium odoratus (Elantamilan et al., 2015). In 1996 on the basis of extensive polyphasic taxonomic analysis it was determined that the organism formerly classified as Flavobacterium odoratum consisted of a heterogeneous group comprising of Myroides odoratus and Myroides odoratimimus (Vancanneyt et al., 1996). Genus Myroides are not part of normal human microflora, rather they are encountered in the wet environments, sea water, soil and sewage treatment plants (Manish Rajan et al., 2017). Over the last few years this organism has been reported to be associated with various life threatening infections including recurrent cellulitis, post-operative wound infections and severe septicaemia (Elantamilan et al., 2015). They are mostly low grade opportunistic pathogens, infecting immunocompromised hosts such as those suffering from liver cirrhosis, end stage renal disease and chronic obstructive pulmonary disease on long term corticosteroid therapy (Beharrysingh, 2017). A case of Myroides odoratimimus bloodstream infection in a patient with chronic diabetic foot ulcer has been reported (Endocott Yazdani et al., 2015). Another report documented a case of soft tissue infection, septic shock and pneumonia due to M. odoratimimus in an immunocompetent male (Benedetti et al., 2011). Few cases of central venous catheter blood stream infections, soft tissue infections, endocarditis and ventriculitis have also been reported due to Myroides spp. (Ferrer et al., 1995; Mac Farlane et al., 1985; Motwai et al., 2004).
Two studies reported nosocomial outbreaks of urinary tract infections in the setting of urinary stones or cancer (Ktari et al., 2012; Yagci et al., 2000). In nosocomial infections the source is mostly unknown, however water has been suspected to carry this organism (Hugo et al., 2006). Animal bites have also been implicated as one of the sources of infections (Maraki et al., 2012). Very few cases of infections due to *Myroides* spp. has been published in India till date. A case of septicaemia from Shillong (Elantamilan et al., 2015), case of urosepsis from Pune (Manish Ranjan et al., 2017) and a case of pericardial effusion from Uttarakhand (Prateek et al., 2015) due to *Myroides* spp. have been reported in the past. Here we report a case of urinary tract infection due to *Myroides* spp. in a child suffering from nephrotic syndrome. Immunocompromised status of the patient due to prolonged hospitalisation and treatment with steroids could have been the reasons why the patient got infected with this rare pathogen.
Treatment of *Myroides* spp. infections is often difficult as they have been found to harbour a KPC-2 carbapenemase, which can hydrolyse expanded-spectrum cephalosporins and carbapenems (Kuai et al., 2011). The production of chromosome encoded metallo-b-lactamases has also been documented in both *M. odoratus* (TUS-1) and *M. odoratimimus* (MUS-1) (Mammeri et al., 2002). Majority of the strains are resistant to beta-lactams, including aztreonam and carbapenems, they exhibit variable susceptibility to aminoglycosides, quinolones and trimethoprim-sulphamethoxazole. Our patient showed susceptibility for Minocycline and intermediate susceptibility for Tigecycline. Patient responded well to minocycline. However, she remained hospitalised for further management of Nephrotic syndrome.

Empirical therapy is usually ineffective due to the multidrug resistance found in *Myroides* spp. Physicians thus need to carefully consider this organism as a pathogen among the immunocompromised patients. This can lead to timely intervention and prompt switching to definitive treatment of infections caused by *Myroides* spp.

References


Mammeri, H., Bellais, S. and Nordmann, P. (2002). Chromosome encoded b-lactamases TUS-1 and MUS-1 from
Myroides odoratus and Myroides odoratimimus (formerly Flavobacterium odoratum), new members of the lineage of molecular subclass B1 metalloenzymes. Antimicrob Agents Chemother 46, 3561–3567


Su, Mei-Yu et al., Urinary tract infection caused by Myroides species: A case report Journal of Microbiology, Immunology and Infection, Volume 48, Issue 2, S133.


How to cite this article: